--- library_name: transformers tags: - generated_from_trainer model-index: - name: unet-resnet34-malaria-trophozoites-wbc results: [] --- # unet-resnet34-malaria-trophozoites-wbc This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1531 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | No log | 1.0 | 242 | 0.2605 | | No log | 2.0 | 484 | 0.2295 | | 0.6582 | 3.0 | 726 | 0.1956 | | 0.6582 | 4.0 | 968 | 0.2041 | | 0.1668 | 5.0 | 1210 | 0.1908 | | 0.1668 | 6.0 | 1452 | 0.1820 | | 0.1603 | 7.0 | 1694 | 0.1835 | | 0.1603 | 8.0 | 1936 | 0.1800 | | 0.1545 | 9.0 | 2178 | 0.1878 | | 0.1545 | 10.0 | 2420 | 0.1753 | | 0.151 | 11.0 | 2662 | 0.1952 | | 0.151 | 12.0 | 2904 | 0.1860 | | 0.1454 | 13.0 | 3146 | 0.1827 | | 0.1454 | 14.0 | 3388 | 0.1729 | | 0.1441 | 15.0 | 3630 | 0.1673 | | 0.1441 | 16.0 | 3872 | 0.1707 | | 0.1425 | 17.0 | 4114 | 0.1654 | | 0.1425 | 18.0 | 4356 | 0.1667 | | 0.1405 | 19.0 | 4598 | 0.1673 | | 0.1405 | 20.0 | 4840 | 0.1699 | | 0.1381 | 21.0 | 5082 | 0.1641 | | 0.1381 | 22.0 | 5324 | 0.1654 | | 0.141 | 23.0 | 5566 | 0.1670 | | 0.141 | 24.0 | 5808 | 0.1658 | | 0.136 | 25.0 | 6050 | 0.1678 | | 0.136 | 26.0 | 6292 | 0.1623 | | 0.136 | 27.0 | 6534 | 0.1640 | | 0.136 | 28.0 | 6776 | 0.1618 | | 0.1326 | 29.0 | 7018 | 0.1594 | | 0.1326 | 30.0 | 7260 | 0.1611 | | 0.1337 | 31.0 | 7502 | 0.1623 | | 0.1337 | 32.0 | 7744 | 0.1599 | | 0.1337 | 33.0 | 7986 | 0.1588 | | 0.1301 | 34.0 | 8228 | 0.1583 | | 0.1301 | 35.0 | 8470 | 0.1585 | | 0.1301 | 36.0 | 8712 | 0.1569 | | 0.1301 | 37.0 | 8954 | 0.1573 | | 0.1298 | 38.0 | 9196 | 0.1562 | | 0.1298 | 39.0 | 9438 | 0.1581 | | 0.1309 | 40.0 | 9680 | 0.1568 | | 0.1309 | 41.0 | 9922 | 0.1558 | | 0.1274 | 42.0 | 10164 | 0.1552 | | 0.1274 | 43.0 | 10406 | 0.1553 | | 0.127 | 44.0 | 10648 | 0.1567 | | 0.127 | 45.0 | 10890 | 0.1542 | | 0.1278 | 46.0 | 11132 | 0.1545 | | 0.1278 | 47.0 | 11374 | 0.1549 | | 0.1275 | 48.0 | 11616 | 0.1535 | | 0.1275 | 49.0 | 11858 | 0.1541 | | 0.126 | 50.0 | 12100 | 0.1531 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.0 - Tokenizers 0.21.0