unet-efficientnet-b3-malaria-trophozoites-wbc
Browse files- README.md +105 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: unet-efficientnet-b3-malaria-trophozoites-wbc
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# unet-efficientnet-b3-malaria-trophozoites-wbc
|
14 |
+
|
15 |
+
This model was trained from scratch on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.1498
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 0.003
|
37 |
+
- train_batch_size: 16
|
38 |
+
- eval_batch_size: 16
|
39 |
+
- seed: 42
|
40 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
41 |
+
- lr_scheduler_type: linear
|
42 |
+
- num_epochs: 50
|
43 |
+
|
44 |
+
### Training results
|
45 |
+
|
46 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
47 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
48 |
+
| No log | 1.0 | 484 | 0.1881 |
|
49 |
+
| 0.6202 | 2.0 | 968 | 0.1806 |
|
50 |
+
| 0.1542 | 3.0 | 1452 | 0.1813 |
|
51 |
+
| 0.1496 | 4.0 | 1936 | 0.1782 |
|
52 |
+
| 0.1417 | 5.0 | 2420 | 0.1692 |
|
53 |
+
| 0.1435 | 6.0 | 2904 | 0.1737 |
|
54 |
+
| 0.1388 | 7.0 | 3388 | 0.1655 |
|
55 |
+
| 0.1369 | 8.0 | 3872 | 0.1672 |
|
56 |
+
| 0.1359 | 9.0 | 4356 | 0.1630 |
|
57 |
+
| 0.1377 | 10.0 | 4840 | 0.1619 |
|
58 |
+
| 0.136 | 11.0 | 5324 | 0.1662 |
|
59 |
+
| 0.1309 | 12.0 | 5808 | 0.2284 |
|
60 |
+
| 0.1321 | 13.0 | 6292 | 0.1591 |
|
61 |
+
| 0.1295 | 14.0 | 6776 | 0.1597 |
|
62 |
+
| 0.1308 | 15.0 | 7260 | 0.1802 |
|
63 |
+
| 0.1308 | 16.0 | 7744 | 0.1629 |
|
64 |
+
| 0.1304 | 17.0 | 8228 | 0.1576 |
|
65 |
+
| 0.1298 | 18.0 | 8712 | 0.1658 |
|
66 |
+
| 0.1262 | 19.0 | 9196 | 0.1542 |
|
67 |
+
| 0.1267 | 20.0 | 9680 | 0.1594 |
|
68 |
+
| 0.1282 | 21.0 | 10164 | 0.1560 |
|
69 |
+
| 0.1259 | 22.0 | 10648 | 0.1605 |
|
70 |
+
| 0.1301 | 23.0 | 11132 | 0.1538 |
|
71 |
+
| 0.124 | 24.0 | 11616 | 0.1535 |
|
72 |
+
| 0.1241 | 25.0 | 12100 | 0.1566 |
|
73 |
+
| 0.1237 | 26.0 | 12584 | 0.1554 |
|
74 |
+
| 0.1291 | 27.0 | 13068 | 0.1531 |
|
75 |
+
| 0.1233 | 28.0 | 13552 | 0.1543 |
|
76 |
+
| 0.1235 | 29.0 | 14036 | 0.1538 |
|
77 |
+
| 0.1247 | 30.0 | 14520 | 0.1527 |
|
78 |
+
| 0.1255 | 31.0 | 15004 | 0.1622 |
|
79 |
+
| 0.1255 | 32.0 | 15488 | 0.1549 |
|
80 |
+
| 0.1236 | 33.0 | 15972 | 0.1527 |
|
81 |
+
| 0.1246 | 34.0 | 16456 | 0.1522 |
|
82 |
+
| 0.1233 | 35.0 | 16940 | 0.1535 |
|
83 |
+
| 0.1237 | 36.0 | 17424 | 0.1524 |
|
84 |
+
| 0.1252 | 37.0 | 17908 | 0.1510 |
|
85 |
+
| 0.1201 | 38.0 | 18392 | 0.1514 |
|
86 |
+
| 0.1263 | 39.0 | 18876 | 0.1521 |
|
87 |
+
| 0.1221 | 40.0 | 19360 | 0.1525 |
|
88 |
+
| 0.1213 | 41.0 | 19844 | 0.1514 |
|
89 |
+
| 0.1193 | 42.0 | 20328 | 0.1504 |
|
90 |
+
| 0.1216 | 43.0 | 20812 | 0.1502 |
|
91 |
+
| 0.1223 | 44.0 | 21296 | 0.1506 |
|
92 |
+
| 0.1198 | 45.0 | 21780 | 0.1508 |
|
93 |
+
| 0.1208 | 46.0 | 22264 | 0.1500 |
|
94 |
+
| 0.1233 | 47.0 | 22748 | 0.1502 |
|
95 |
+
| 0.1176 | 48.0 | 23232 | 0.1495 |
|
96 |
+
| 0.1225 | 49.0 | 23716 | 0.1499 |
|
97 |
+
| 0.1212 | 50.0 | 24200 | 0.1498 |
|
98 |
+
|
99 |
+
|
100 |
+
### Framework versions
|
101 |
+
|
102 |
+
- Transformers 4.48.3
|
103 |
+
- Pytorch 2.5.1+cu124
|
104 |
+
- Datasets 3.3.0
|
105 |
+
- Tokenizers 0.21.0
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ead74824c4ec8ad96a5e8016a164364639228b08df82b5afd7e7c60b9bebb81
|
3 |
+
size 53059184
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:652f86c7525942f46aa794eb8420ee1ff54d8c8801c27c627337cad35b4cda64
|
3 |
+
size 5368
|