--- library_name: transformers tags: - generated_from_trainer model-index: - name: unet-efficientnet-b2-malaria-trophozoites-wbc results: [] --- # unet-efficientnet-b2-malaria-trophozoites-wbc This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1470 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.02 - num_epochs: 90 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | No log | 1.0 | 484 | 0.8717 | | 10.9992 | 2.0 | 968 | 0.1936 | | 0.2866 | 3.0 | 1452 | 0.1798 | | 0.1569 | 4.0 | 1936 | 0.1670 | | 0.1414 | 5.0 | 2420 | 0.1650 | | 0.1392 | 6.0 | 2904 | 0.1629 | | 0.1342 | 7.0 | 3388 | 0.1626 | | 0.1326 | 8.0 | 3872 | 0.1569 | | 0.1332 | 9.0 | 4356 | 0.1577 | | 0.1323 | 10.0 | 4840 | 0.1609 | | 0.1295 | 11.0 | 5324 | 0.1549 | | 0.127 | 12.0 | 5808 | 0.1552 | | 0.1277 | 13.0 | 6292 | 0.1560 | | 0.126 | 14.0 | 6776 | 0.1550 | | 0.1267 | 15.0 | 7260 | 0.1524 | | 0.1261 | 16.0 | 7744 | 0.1535 | | 0.131 | 17.0 | 8228 | 0.1541 | | 0.1258 | 18.0 | 8712 | 0.1532 | | 0.1232 | 19.0 | 9196 | 0.1505 | | 0.1258 | 20.0 | 9680 | 0.1616 | | 0.1257 | 21.0 | 10164 | 0.1547 | | 0.1251 | 22.0 | 10648 | 0.1516 | | 0.1264 | 23.0 | 11132 | 0.1512 | | 0.1221 | 24.0 | 11616 | 0.1527 | | 0.1239 | 25.0 | 12100 | 0.1536 | | 0.1221 | 26.0 | 12584 | 0.1520 | | 0.1272 | 27.0 | 13068 | 0.1515 | | 0.1214 | 28.0 | 13552 | 0.1522 | | 0.1211 | 29.0 | 14036 | 0.1490 | | 0.1202 | 30.0 | 14520 | 0.1515 | | 0.1256 | 31.0 | 15004 | 0.1503 | | 0.1256 | 32.0 | 15488 | 0.1513 | | 0.1215 | 33.0 | 15972 | 0.1494 | | 0.1222 | 34.0 | 16456 | 0.1516 | | 0.1226 | 35.0 | 16940 | 0.1507 | | 0.1218 | 36.0 | 17424 | 0.1493 | | 0.1222 | 37.0 | 17908 | 0.1529 | | 0.12 | 38.0 | 18392 | 0.1516 | | 0.1226 | 39.0 | 18876 | 0.1506 | | 0.1213 | 40.0 | 19360 | 0.1495 | | 0.1205 | 41.0 | 19844 | 0.1481 | | 0.1207 | 42.0 | 20328 | 0.1495 | | 0.1189 | 43.0 | 20812 | 0.1480 | | 0.1194 | 44.0 | 21296 | 0.1488 | | 0.1219 | 45.0 | 21780 | 0.1510 | | 0.1191 | 46.0 | 22264 | 0.1492 | | 0.1217 | 47.0 | 22748 | 0.1487 | | 0.1185 | 48.0 | 23232 | 0.1511 | | 0.1205 | 49.0 | 23716 | 0.1475 | | 0.1218 | 50.0 | 24200 | 0.1497 | | 0.1194 | 51.0 | 24684 | 0.1495 | | 0.1221 | 52.0 | 25168 | 0.1497 | | 0.1171 | 53.0 | 25652 | 0.1487 | | 0.1189 | 54.0 | 26136 | 0.1476 | | 0.1188 | 55.0 | 26620 | 0.1498 | | 0.1186 | 56.0 | 27104 | 0.1483 | | 0.1188 | 57.0 | 27588 | 0.1484 | | 0.1177 | 58.0 | 28072 | 0.1488 | | 0.1198 | 59.0 | 28556 | 0.1503 | | 0.1173 | 60.0 | 29040 | 0.1476 | | 0.1192 | 61.0 | 29524 | 0.1474 | | 0.1189 | 62.0 | 30008 | 0.1476 | | 0.1189 | 63.0 | 30492 | 0.1490 | | 0.1167 | 64.0 | 30976 | 0.1485 | | 0.1198 | 65.0 | 31460 | 0.1474 | | 0.1177 | 66.0 | 31944 | 0.1477 | | 0.1188 | 67.0 | 32428 | 0.1489 | | 0.1174 | 68.0 | 32912 | 0.1478 | | 0.1171 | 69.0 | 33396 | 0.1477 | | 0.12 | 70.0 | 33880 | 0.1483 | | 0.1188 | 71.0 | 34364 | 0.1475 | | 0.1172 | 72.0 | 34848 | 0.1477 | | 0.1174 | 73.0 | 35332 | 0.1474 | | 0.1174 | 74.0 | 35816 | 0.1487 | | 0.1174 | 75.0 | 36300 | 0.1484 | | 0.1178 | 76.0 | 36784 | 0.1478 | | 0.1169 | 77.0 | 37268 | 0.1488 | | 0.1182 | 78.0 | 37752 | 0.1478 | | 0.1132 | 79.0 | 38236 | 0.1477 | | 0.1175 | 80.0 | 38720 | 0.1472 | | 0.1142 | 81.0 | 39204 | 0.1473 | | 0.1176 | 82.0 | 39688 | 0.1475 | | 0.118 | 83.0 | 40172 | 0.1476 | | 0.1168 | 84.0 | 40656 | 0.1475 | | 0.116 | 85.0 | 41140 | 0.1475 | | 0.116 | 86.0 | 41624 | 0.1472 | | 0.1164 | 87.0 | 42108 | 0.1472 | | 0.1149 | 88.0 | 42592 | 0.1474 | | 0.1144 | 89.0 | 43076 | 0.1471 | | 0.1154 | 90.0 | 43560 | 0.1470 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.0 - Tokenizers 0.21.0