# Model Card for mlpf-cms-v2.1.0 This model reconstructs particles in a detector, based on the tracks and calorimeter clusters recorded by the detector. ## Model Details The performance is measured with respect to generator-level jets and MET computed from Pythia particles, i.e. the truth-level jets and MET.
Jet performance ttbar jet resolution qq jet resolution ttbar jet resolution
MET performance ttbar MET resolution qq MET resolution ttbar MET resolution
### Model Description - **Developed by:** CMS MLPF Team - **Model type:** transformer - **License:** Apache License ### Model Sources - **Repository:** https://github.com/jpata/particleflow/releases/tag/v2.1.0 ## Uses ### Direct Use This model may be used to study the physics and computational performance on ML-based reconstruction in simulation within the CMS collaboration. ### Out-of-Scope Use This model is not intended for physics measurements on real data or for use outside the CMS collaboration. ## Bias, Risks, and Limitations The model has only been trained on simulation data and has not been validated against real data. The model has not been peer reviewed or published in a peer-reviewed journal. ## How to Get Started with the Model Use the code below to get started with the model. ``` #get the code git clone https://github.com/jpata/particleflow cd particleflow git checkout v2.1.0 #get the models git clone https://huggingface.co/jpata/particleflow models ``` ## Training Details Trained on 8x MI250X for 18 epochs over ~26 days. The training was continued multiple times from a checkpoint due to the 24h time limit. ### Training Data The following datasets were used: ``` 179G /local/joosep/mlpf/tensorflow_datasets/cms/cms_pf_qcd/2.5.0 84G /local/joosep/mlpf/tensorflow_datasets/cms/cms_pf_qcd_nopu/2.5.0 179G /local/joosep/mlpf/tensorflow_datasets/cms/cms_pf_ttbar/2.5.0 86G /local/joosep/mlpf/tensorflow_datasets/cms/cms_pf_ttbar_nopu/2.5.0 173G /local/joosep/mlpf/tensorflow_datasets/cms/cms_pf_ztt/2.5.0 57G /local/joosep/mlpf/tensorflow_datasets/cms/cms_pf_ztt_nopu/2.5.0 ``` ## Training Procedure ```bash #!/bin/bash #SBATCH --job-name=mlpf-train #SBATCH --account=project_465000301 #SBATCH --time=3-00:00:00 #SBATCH --nodes=1 #SBATCH --ntasks-per-node=1 #SBATCH --cpus-per-task=32 #SBATCH --mem=400G #SBATCH --gpus-per-task=8 #SBATCH --partition=small-g #SBATCH --no-requeue #SBATCH -o logs/slurm-%x-%j-%N.out cd /scratch/project_465000301/particleflow module load LUMI/24.03 partition/G export IMG=/scratch/project_465000301/pytorch-rocm6.2.simg export PYTHONPATH=`pwd` export TFDS_DATA_DIR=/scratch/project_465000301/tensorflow_datasets #export MIOPEN_DISABLE_CACHE=true export MIOPEN_USER_DB_PATH=/tmp/${USER}-${SLURM_JOB_ID}-miopen-cache export MIOPEN_CUSTOM_CACHE_DIR=${MIOPEN_USER_DB_PATH} export TF_CPP_MAX_VLOG_LEVEL=-1 #to suppress ROCm fusion is enabled messages export ROCM_PATH=/opt/rocm #export NCCL_DEBUG=INFO #export MIOPEN_ENABLE_LOGGING=1 #export MIOPEN_ENABLE_LOGGING_CMD=1 #export MIOPEN_LOG_LEVEL=4 export KERAS_BACKEND=torch env #TF training singularity exec \ --rocm \ -B /scratch/project_465000301 \ -B /tmp \ --env LD_LIBRARY_PATH=/opt/rocm/lib/ \ --env CUDA_VISIBLE_DEVICES=$ROCR_VISIBLE_DEVICES \ $IMG python3 mlpf/pipeline.py --gpus 8 \ --data-dir $TFDS_DATA_DIR --config parameters/pytorch/pyg-cms.yaml \ --train --gpu-batch-multiplier 5 --num-workers 8 --prefetch-factor 50 --checkpoint-freq 1 --conv-type attention --dtype bfloat16 --lr 0.0001 ``` ## Evaluation ```bash #!/bin/bash #SBATCH --partition gpu #SBATCH --gres gpu:mig:1 #SBATCH --mem-per-gpu 100G #SBATCH -o logs/slurm-%x-%j-%N.out IMG=/home/software/singularity/pytorch.simg:2024-08-18 cd ~/particleflow WEIGHTS=experiments/pyg-cms_20241101_090645_682892/checkpoints/checkpoint-08-2.986092.pth DATASET=$1 env singularity exec -B /scratch/persistent --nv \ --env PYTHONPATH=`pwd` \ --env KERAS_BACKEND=torch \ $IMG python mlpf/pipeline.py --gpus 1 \ --data-dir /scratch/persistent/joosep/tensorflow_datasets --config parameters/pytorch/pyg-cms-nopu.yaml \ --test --make-plots --gpu-batch-multiplier 2 --load $WEIGHTS --ntest 50000 --dtype bfloat16 --num-workers 8 --prefetch-factor 10 --test-datasets $DATASET ``` ## Citation ## Glossary - PF: particle flow reconstruction - MLPF: machine learning for particle flow - CMS: Compact Muon Solenoid ## Model Card Contact Joosep Pata, joosep.pata@cern.ch