smith commited on
Commit
7a73558
1 Parent(s): f2510fb

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -0
README.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - peoples_daily_ner
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: bert-finetuned-ner-chinese-people-daily
13
+ results:
14
+ - task:
15
+ name: Token Classification
16
+ type: token-classification
17
+ dataset:
18
+ name: peoples_daily_ner
19
+ type: peoples_daily_ner
20
+ config: peoples_daily_ner
21
+ split: validation
22
+ args: peoples_daily_ner
23
+ metrics:
24
+ - name: Precision
25
+ type: precision
26
+ value: 0.8608247422680413
27
+ - name: Recall
28
+ type: recall
29
+ value: 0.8608247422680413
30
+ - name: F1
31
+ type: f1
32
+ value: 0.8608247422680413
33
+ - name: Accuracy
34
+ type: accuracy
35
+ value: 0.9852778800147222
36
+ ---
37
+
38
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
39
+ should probably proofread and complete it, then remove this comment. -->
40
+
41
+ # bert-finetuned-ner-chinese-people-daily
42
+
43
+ This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on the peoples_daily_ner dataset.
44
+ It achieves the following results on the evaluation set:
45
+ - Loss: 0.0604
46
+ - Precision: 0.8608
47
+ - Recall: 0.8608
48
+ - F1: 0.8608
49
+ - Accuracy: 0.9853
50
+
51
+ ## Model description
52
+
53
+ More information needed
54
+
55
+ ## Intended uses & limitations
56
+
57
+ More information needed
58
+
59
+ ## Training and evaluation data
60
+
61
+ More information needed
62
+
63
+ ## Training procedure
64
+
65
+ ### Training hyperparameters
66
+
67
+ The following hyperparameters were used during training:
68
+ - learning_rate: 2e-05
69
+ - train_batch_size: 8
70
+ - eval_batch_size: 8
71
+ - seed: 42
72
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
73
+ - lr_scheduler_type: linear
74
+ - num_epochs: 3
75
+
76
+ ### Training results
77
+
78
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
79
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
80
+ | No log | 1.0 | 131 | 0.0753 | 0.6955 | 0.7887 | 0.7391 | 0.9764 |
81
+ | No log | 2.0 | 262 | 0.0588 | 0.7971 | 0.8505 | 0.8229 | 0.9840 |
82
+ | No log | 3.0 | 393 | 0.0604 | 0.8608 | 0.8608 | 0.8608 | 0.9853 |
83
+
84
+
85
+ ### Framework versions
86
+
87
+ - Transformers 4.29.2
88
+ - Pytorch 2.0.1
89
+ - Datasets 2.12.0
90
+ - Tokenizers 0.13.3