File size: 67,272 Bytes
18b6fa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:20420717
- loss:CachedMultipleNegativesRankingLoss
- loss:CachedMultipleNegativesSymmetricRankingLoss
widget:
- source_sentence: what is the difference between body spray and eau de toilette?
  sentences:
  - Eau de Toilette (EDT) is ideal for those that may find the EDP or Perfume oil
    too strong, with 7%-12% fragrance concentration in alcohol. Gives four to five
    hours wear. Body Mist is a light refreshing fragrance perfect for layering with
    other products from the same family. 3-5% fragrance concentration in alcohol.
  - To join the Army as an enlisted member you must usually take the Armed Services
    Vocational Aptitude Battery (ASVAB) test and get a good score. The maximum ASVAB
    score is 99. For enlistment into the Army you must get a minimum ASVAB score of
    31.
  - 'Points needed to redeem rewards with Redbox Perks: 1,500 points = FREE 1-night
    DVD rental. 1,750 points = FREE Blu-ray rental. 2,500 points = FREE 1-night Game
    rental.'
- source_sentence: hurtles definition
  sentences:
  - BCIP-NBT Solution is a 5-bromo, 4-chloro, 3-indolylphosphate (BCIP)/Nitro-Blue
    Tetrazolium (NBT) substrate, used for the localization of alkaline phosphatase
    (AP) labeled probes on western, northern, southern and dot blots.
  - 'Definition of hurtle for English Language Learners. : 1  to move or fall with
    great speed and force. : 2  to cause (something or someone) to move or go with
    great speed and force.'
  - 10 most extreme places on Earth. A dongle is a piece of hardware that attaches
    to a computer and allows a piece of secured software to run. The device does not
    contain the software in its entirety, but rather is an electronic key that unlocks
    the program on a computer.0 most extreme places on Earth. A dongle is a piece
    of hardware that attaches to a computer and allows a piece of secured software
    to run. The device does not contain the software in its entirety, but rather is
    an electronic key that unlocks the program on a computer.
- source_sentence: what is nbt solution used for
  sentences:
  - Nembutal Sodium Solution [edit]. Nembutal Sodium Solution (pentobarbital sodium
    injection) is a sterile solution for intravenous or intramuscular injection. Each
    mL contains pentobarbital sodium 50 mg, in a vehicle of propylene glycol, 40%,
    alcohol, 10% and water for injection, to volume.
  - BCIP-NBT Solution is a 5-bromo, 4-chloro, 3-indolylphosphate (BCIP)/Nitro-Blue
    Tetrazolium (NBT) substrate, used for the localization of alkaline phosphatase
    (AP) labeled probes on western, northern, southern and dot blots.
  - 'Definition of hurtle for English Language Learners. : 1  to move or fall with
    great speed and force. : 2  to cause (something or someone) to move or go with
    great speed and force.'
- source_sentence: definition doula
  sentences:
  - "The Trivago Guy, aka Tim Williams, the Houston-born actor and Berlin resident\
    \ who stars in hotel-search site Trivagoâ\x80\x99s TV commercials in North America,\
    \ says heâ\x80\x99s perplexed and amused about all the attention heâ\x80\x99s\
    \ getting from the TV spots, and heâ\x80\x99s enjoying every minute of it. â\x80\
    \x9CBring it on, I love it,â\x80\x9D Williams says."
  - Average Length of Doula Study. Typically, a birth doula needs to finish 7 to 12
    hours of childbirth education, 16 hours of birth doula training, and attend at
    two to five births. A postpartum doula usually attends about 27 hours of postpartum
    doula education and assists two or more women with postpartum support.
  - Doula. A doula, is a nonmedical person who assists a woman before, during, or
    after childbirth, as well as her partner and/or family by providing information,
    physical assistance, and emotional support.
- source_sentence: who is catch me if you can based on
  sentences:
  - Catch Me If You Can Catch Me If You Can is a 2002 American biographical crime
    film directed and produced by Steven Spielberg from a screenplay by Jeff Nathanson.
    The film is based on the life of Frank Abagnale, who, before his 19th birthday,
    successfully performed cons worth millions of dollars by posing as a Pan American
    World Airways pilot, a Georgia doctor and a Louisiana parish prosecutor. His primary
    crime was check fraud; he became so experienced that the FBI eventually turned
    to him for help in catching other checking forgers. The film stars Leonardo DiCaprio
    and Tom Hanks, with Christopher Walken, Martin Sheen, and Nathalie Baye in supporting
    roles.
  - Ghost Rider (Johnny Blaze) Centurious appeared, stealing Blaze's soul into his
    soul crystal. Zarathos, weakened from the ordeal used the last of his strength
    to shatter the crystal, freeing Blaze's soul and many others contained inside
    of the crystal as well. Before the crystal was reformed, Centurious was absorbed
    into the crystal. Zarathos followed him into the crystal, freeing Blaze from the
    curse, restoring his soul, and ending his time as the Ghost Rider.[31]
  - Colonial Brazil In contrast to the neighboring Spanish possessions, which had
    several viceroyalties with jurisdiction initially over New Spain (Mexico) and
    Peru, and in the eighteenth century expanded to viceroyalties of Rio de la Plata
    and New Granada, the Portuguese colony of Brazil was settled mainly in the coastal
    area by the Portuguese and a large black slave population working sugar plantations
    and mines. The boom and bust economic cycles were linked to export products. Brazil's
    sugar age, with the development of plantation slavery, merchants serving as middle
    men between production sites, Brazilian ports, and Europe was undermined by the
    growth of the sugar industry in the Caribbean on islands that European powers
    seized from Spain. Gold and diamonds were discovered and mined in southern Brazil
    through the end of the colonial era. Brazilian cities were largely port cities
    and the colonial administrative capital was moved several times in response to
    the rise and fall of export products' importance. Unlike Spanish America that
    fragmented in many republics, Brazil remained as a single administrative unit
    with a monarch, giving rise to the largest country in Latin America. Like Spanish
    America with European Spanish, Brazil had linguistic integrity of Portuguese.
    Both Spanish America and Brazil were Roman Catholic.
datasets:
- sentence-transformers/msmarco-msmarco-distilbert-base-v3
- sentence-transformers/gooaq
- sentence-transformers/natural-questions
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: ModernBERT-small-1.5-Retrieval-BEIR-Tuned
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoMSMARCO
      type: NanoMSMARCO
    metrics:
    - type: cosine_accuracy@1
      value: 0.08
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.3
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.36
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.5
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.08
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.09999999999999998
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.07200000000000001
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.05000000000000001
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.08
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.3
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.36
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2774734521140046
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.20799206349206348
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.22779015501462538
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoNQ
      type: NanoNQ
    metrics:
    - type: cosine_accuracy@1
      value: 0.16
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.32
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.44
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.16
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.10666666666666666
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.08800000000000001
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.06000000000000001
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.14
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.29
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.4
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.55
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.3273011574644101
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.27730158730158727
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.2638075437451129
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoHotpotQA
      type: NanoHotpotQA
    metrics:
    - type: cosine_accuracy@1
      value: 0.52
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.72
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.78
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.84
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.52
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.29333333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19199999999999995
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.11799999999999997
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.26
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.44
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.48
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.59
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5097756918840387
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.625547619047619
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4238786723152704
      name: Cosine Map@100
  - task:
      type: nano-beir
      name: Nano BEIR
    dataset:
      name: NanoBEIR mean
      type: NanoBEIR_mean
    metrics:
    - type: cosine_accuracy@1
      value: 0.25333333333333335
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.4466666666666666
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5266666666666667
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6466666666666666
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.25333333333333335
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.16666666666666666
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.11733333333333333
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.076
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.16
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.3433333333333333
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.41333333333333333
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5466666666666667
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.3715167671541511
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.37028042328042327
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.3051587903583362
      name: Cosine Map@100
---

# ModernBERT-small-1.5-Retrieval-BEIR-Tuned

This is a [sentence-transformers](https://www.SBERT.net) model trained on the [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) and [natural_questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) datasets. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 1024 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
    - [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3)
    - [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
    - [natural_questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'who is catch me if you can based on',
    'Catch Me If You Can Catch Me If You Can is a 2002 American biographical crime film directed and produced by Steven Spielberg from a screenplay by Jeff Nathanson. The film is based on the life of Frank Abagnale, who, before his 19th birthday, successfully performed cons worth millions of dollars by posing as a Pan American World Airways pilot, a Georgia doctor and a Louisiana parish prosecutor. His primary crime was check fraud; he became so experienced that the FBI eventually turned to him for help in catching other checking forgers. The film stars Leonardo DiCaprio and Tom Hanks, with Christopher Walken, Martin Sheen, and Nathalie Baye in supporting roles.',
    "Colonial Brazil In contrast to the neighboring Spanish possessions, which had several viceroyalties with jurisdiction initially over New Spain (Mexico) and Peru, and in the eighteenth century expanded to viceroyalties of Rio de la Plata and New Granada, the Portuguese colony of Brazil was settled mainly in the coastal area by the Portuguese and a large black slave population working sugar plantations and mines. The boom and bust economic cycles were linked to export products. Brazil's sugar age, with the development of plantation slavery, merchants serving as middle men between production sites, Brazilian ports, and Europe was undermined by the growth of the sugar industry in the Caribbean on islands that European powers seized from Spain. Gold and diamonds were discovered and mined in southern Brazil through the end of the colonial era. Brazilian cities were largely port cities and the colonial administrative capital was moved several times in response to the rise and fall of export products' importance. Unlike Spanish America that fragmented in many republics, Brazil remained as a single administrative unit with a monarch, giving rise to the largest country in Latin America. Like Spanish America with European Spanish, Brazil had linguistic integrity of Portuguese. Both Spanish America and Brazil were Roman Catholic.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000,  0.5555, -0.1763],
#         [ 0.5555,  1.0000, -0.0652],
#         [-0.1763, -0.0652,  1.0000]])
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `NanoMSMARCO`, `NanoNQ` and `NanoHotpotQA`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | NanoMSMARCO | NanoNQ     | NanoHotpotQA |
|:--------------------|:------------|:-----------|:-------------|
| cosine_accuracy@1   | 0.08        | 0.16       | 0.52         |
| cosine_accuracy@3   | 0.3         | 0.32       | 0.72         |
| cosine_accuracy@5   | 0.36        | 0.44       | 0.78         |
| cosine_accuracy@10  | 0.5         | 0.6        | 0.84         |
| cosine_precision@1  | 0.08        | 0.16       | 0.52         |
| cosine_precision@3  | 0.1         | 0.1067     | 0.2933       |
| cosine_precision@5  | 0.072       | 0.088      | 0.192        |
| cosine_precision@10 | 0.05        | 0.06       | 0.118        |
| cosine_recall@1     | 0.08        | 0.14       | 0.26         |
| cosine_recall@3     | 0.3         | 0.29       | 0.44         |
| cosine_recall@5     | 0.36        | 0.4        | 0.48         |
| cosine_recall@10    | 0.5         | 0.55       | 0.59         |
| **cosine_ndcg@10**  | **0.2775**  | **0.3273** | **0.5098**   |
| cosine_mrr@10       | 0.208       | 0.2773     | 0.6255       |
| cosine_map@100      | 0.2278      | 0.2638     | 0.4239       |

#### Nano BEIR

* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator) with these parameters:
  ```json
  {
      "dataset_names": [
          "MSMARCO",
          "NQ",
          "HotpotQA"
      ]
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.2533     |
| cosine_accuracy@3   | 0.4467     |
| cosine_accuracy@5   | 0.5267     |
| cosine_accuracy@10  | 0.6467     |
| cosine_precision@1  | 0.2533     |
| cosine_precision@3  | 0.1667     |
| cosine_precision@5  | 0.1173     |
| cosine_precision@10 | 0.076      |
| cosine_recall@1     | 0.16       |
| cosine_recall@3     | 0.3433     |
| cosine_recall@5     | 0.4133     |
| cosine_recall@10    | 0.5467     |
| **cosine_ndcg@10**  | **0.3715** |
| cosine_mrr@10       | 0.3703     |
| cosine_map@100      | 0.3052     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Datasets

#### msmarco

* Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 17,307,990 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                           | positive                                                                            | negative                                                                            |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                              | string                                                                              |
  | details | <ul><li>min: 5 tokens</li><li>mean: 9.57 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 44 tokens</li><li>mean: 83.39 tokens</li><li>max: 211 tokens</li></ul> | <ul><li>min: 24 tokens</li><li>mean: 83.62 tokens</li><li>max: 268 tokens</li></ul> |
* Samples:
  | anchor                                  | positive                                                                                                                                                                                                                                          | negative                                                                                                                                                                                                                                                                                                                                                                                            |
  |:----------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>what are the liberal arts?</code> | <code>liberal arts. 1. the academic course of instruction at a college intended to provide general knowledge and comprising the arts, humanities, natural sciences, and social sciences, as opposed to professional or technical subjects.</code> | <code>The liberal arts education at the secondary school level prepares the student for higher education at a university. They are thus meant for the more academically minded students. In addition to the usual curriculum, students of a liberal arts education often study Latin and Ancient Greek. Some liberal arts education provide general education, others have a specific focus.</code> |
  | <code>what are the liberal arts?</code> | <code>liberal arts. 1. the academic course of instruction at a college intended to provide general knowledge and comprising the arts, humanities, natural sciences, and social sciences, as opposed to professional or technical subjects.</code> | <code>Liberal Arts. Upon completion of the Liberal Arts degree, students will be able to express ideas in coherent, creative, and appropriate forms, orally and in writing. Students will be able to apply their reading abilities in order to interconnect an understanding of resources to academic, professional, and personal interests.</code>                                                 |
  | <code>what are the liberal arts?</code> | <code>liberal arts. 1. the academic course of instruction at a college intended to provide general knowledge and comprising the arts, humanities, natural sciences, and social sciences, as opposed to professional or technical subjects.</code> | <code>Rather than preparing students for a specific career, liberal arts programs focus on cultural literacy and hone communication and analytical skills. They often cover various disciplines, ranging from the humanities to social sciences. 1  Program Levels in Liberal Arts: Associate degree, Bachelor's degree, Master's degree.</code>                                                    |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "mini_batch_size": 64
  }
  ```

#### gooaq

* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 3,012,496 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                            |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 8 tokens</li><li>mean: 12.19 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 58.34 tokens</li><li>max: 124 tokens</li></ul> |
* Samples:
  | anchor                                             | positive                                                                                                                                                                                                                                                                                                                                        |
  |:---------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>is toprol xl the same as metoprolol?</code>  | <code>Metoprolol succinate is also known by the brand name Toprol XL. It is the extended-release form of metoprolol. Metoprolol succinate is approved to treat high blood pressure, chronic chest pain, and congestive heart failure.</code>                                                                                                    |
  | <code>are you experienced cd steve hoffman?</code> | <code>The Are You Experienced album was apparently mastered from the original stereo UK master tapes (according to Steve Hoffman - one of the very few who has heard both the master tapes and the CDs produced over the years). ... The CD booklets were a little sparse, but at least they stayed true to the album's original design.</code> |
  | <code>how are babushka dolls made?</code>          | <code>Matryoshka dolls are made of wood from lime, balsa, alder, aspen, and birch trees; lime is probably the most common wood type. ... After cutting, the trees are stripped of most of their bark, although a few inner rings of bark are left to bind the wood and keep it from splitting.</code>                                           |
* Loss: [<code>CachedMultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativessymmetricrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "mini_batch_size": 64
  }
  ```

#### natural_questions

* Dataset: [natural_questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 100,231 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                             | positive                                                                             |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               |
  | details | <ul><li>min: 10 tokens</li><li>mean: 12.47 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 138.32 tokens</li><li>max: 556 tokens</li></ul> |
* Samples:
  | anchor                                                          | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
  |:----------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>when did richmond last play in a preliminary final</code> | <code>Richmond Football Club Richmond began 2017 with 5 straight wins, a feat it had not achieved since 1995. A series of close losses hampered the Tigers throughout the middle of the season, including a 5-point loss to the Western Bulldogs, 2-point loss to Fremantle, and a 3-point loss to the Giants. Richmond ended the season strongly with convincing victories over Fremantle and St Kilda in the final two rounds, elevating the club to 3rd on the ladder. Richmond's first final of the season against the Cats at the MCG attracted a record qualifying final crowd of 95,028; the Tigers won by 51 points. Having advanced to the first preliminary finals for the first time since 2001, Richmond defeated Greater Western Sydney by 36 points in front of a crowd of 94,258 to progress to the Grand Final against Adelaide, their first Grand Final appearance since 1982. The attendance was 100,021, the largest crowd to a grand final since 1986. The Crows led at quarter time and led by as many as 13, but the Tig...</code> |
  | <code>who sang what in the world's come over you</code>         | <code>Jack Scott (singer) At the beginning of 1960, Scott again changed record labels, this time to Top Rank Records.[1] He then recorded four Billboard Hot 100 hits – "What in the World's Come Over You" (#5), "Burning Bridges" (#3) b/w "Oh Little One" (#34), and "It Only Happened Yesterday" (#38).[1] "What in the World's Come Over You" was Scott's second gold disc winner.[6] Scott continued to record and perform during the 1960s and 1970s.[1] His song "You're Just Gettin' Better" reached the country charts in 1974.[1] In May 1977, Scott recorded a Peel session for BBC Radio 1 disc jockey, John Peel.</code>                                                                                                                                                                                                                                                                                                                                                                                                                   |
  | <code>who produces the most wool in the world</code>            | <code>Wool Global wool production is about 2 million tonnes per year, of which 60% goes into apparel. Wool comprises ca 3% of the global textile market, but its value is higher owing to dying and other modifications of the material.[1] Australia is a leading producer of wool which is mostly from Merino sheep but has been eclipsed by China in terms of total weight.[30] New Zealand (2016) is the third-largest producer of wool, and the largest producer of crossbred wool. Breeds such as Lincoln, Romney, Drysdale, and Elliotdale produce coarser fibers, and wool from these sheep is usually used for making carpets.</code>                                                                                                                                                                                                                                                                                                                                                                                                           |
* Loss: [<code>CachedMultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativessymmetricrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "mini_batch_size": 64
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 256
- `weight_decay`: 0.01
- `num_train_epochs`: 1
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `bf16_full_eval`: True
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: True
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch      | Step      | Training Loss | NanoMSMARCO_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoHotpotQA_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
|:----------:|:---------:|:-------------:|:--------------------------:|:---------------------:|:---------------------------:|:----------------------------:|
| -1         | -1        | -             | 0.2397                     | 0.3332                | 0.4767                      | 0.3499                       |
| 0.0063     | 500       | 1.6152        | -                          | -                     | -                           | -                            |
| 0.0125     | 1000      | 1.6149        | -                          | -                     | -                           | -                            |
| 0.0188     | 1500      | 1.5833        | -                          | -                     | -                           | -                            |
| 0.0251     | 2000      | 1.58          | 0.2449                     | 0.3259                | 0.4793                      | 0.3500                       |
| 0.0313     | 2500      | 1.5475        | -                          | -                     | -                           | -                            |
| 0.0376     | 3000      | 1.5432        | -                          | -                     | -                           | -                            |
| 0.0439     | 3500      | 1.5067        | -                          | -                     | -                           | -                            |
| 0.0501     | 4000      | 1.4909        | 0.2474                     | 0.3124                | 0.4786                      | 0.3461                       |
| 0.0564     | 4500      | 1.4532        | -                          | -                     | -                           | -                            |
| 0.0627     | 5000      | 1.425         | -                          | -                     | -                           | -                            |
| 0.0689     | 5500      | 1.4394        | -                          | -                     | -                           | -                            |
| 0.0752     | 6000      | 1.42          | 0.2532                     | 0.3149                | 0.4895                      | 0.3525                       |
| 0.0815     | 6500      | 1.3737        | -                          | -                     | -                           | -                            |
| 0.0878     | 7000      | 1.3755        | -                          | -                     | -                           | -                            |
| 0.0940     | 7500      | 1.3194        | -                          | -                     | -                           | -                            |
| 0.1003     | 8000      | 1.3143        | 0.2660                     | 0.3163                | 0.4823                      | 0.3548                       |
| 0.1066     | 8500      | 1.3038        | -                          | -                     | -                           | -                            |
| 0.1128     | 9000      | 1.2815        | -                          | -                     | -                           | -                            |
| 0.1191     | 9500      | 1.2291        | -                          | -                     | -                           | -                            |
| 0.1254     | 10000     | 1.24          | 0.2687                     | 0.3407                | 0.4876                      | 0.3657                       |
| 0.1316     | 10500     | 1.2383        | -                          | -                     | -                           | -                            |
| 0.1379     | 11000     | 1.2116        | -                          | -                     | -                           | -                            |
| 0.1442     | 11500     | 1.1967        | -                          | -                     | -                           | -                            |
| 0.1504     | 12000     | 1.1712        | 0.2697                     | 0.3436                | 0.4888                      | 0.3674                       |
| 0.1567     | 12500     | 1.1781        | -                          | -                     | -                           | -                            |
| 0.1630     | 13000     | 1.1798        | -                          | -                     | -                           | -                            |
| 0.1692     | 13500     | 1.1486        | -                          | -                     | -                           | -                            |
| 0.1755     | 14000     | 1.156         | 0.2761                     | 0.3490                | 0.4895                      | 0.3716                       |
| 0.1818     | 14500     | 1.1622        | -                          | -                     | -                           | -                            |
| 0.1880     | 15000     | 1.1638        | -                          | -                     | -                           | -                            |
| 0.1943     | 15500     | 1.1447        | -                          | -                     | -                           | -                            |
| 0.2006     | 16000     | 1.1353        | 0.2783                     | 0.3427                | 0.4967                      | 0.3726                       |
| 0.2068     | 16500     | 1.1397        | -                          | -                     | -                           | -                            |
| 0.2131     | 17000     | 1.1346        | -                          | -                     | -                           | -                            |
| 0.2194     | 17500     | 1.1345        | -                          | -                     | -                           | -                            |
| 0.2256     | 18000     | 1.13          | 0.2697                     | 0.3424                | 0.5051                      | 0.3724                       |
| 0.2319     | 18500     | 1.1145        | -                          | -                     | -                           | -                            |
| 0.2382     | 19000     | 1.1215        | -                          | -                     | -                           | -                            |
| 0.2445     | 19500     | 1.1193        | -                          | -                     | -                           | -                            |
| 0.2507     | 20000     | 1.1329        | 0.2795                     | 0.3363                | 0.4992                      | 0.3717                       |
| 0.2570     | 20500     | 1.1239        | -                          | -                     | -                           | -                            |
| 0.2633     | 21000     | 1.0929        | -                          | -                     | -                           | -                            |
| 0.2695     | 21500     | 1.1079        | -                          | -                     | -                           | -                            |
| 0.2758     | 22000     | 1.1192        | 0.2792                     | 0.3278                | 0.5054                      | 0.3708                       |
| 0.2821     | 22500     | 1.1252        | -                          | -                     | -                           | -                            |
| 0.2883     | 23000     | 1.1089        | -                          | -                     | -                           | -                            |
| 0.2946     | 23500     | 1.1032        | -                          | -                     | -                           | -                            |
| 0.3009     | 24000     | 1.0974        | 0.2769                     | 0.3372                | 0.5043                      | 0.3728                       |
| 0.3071     | 24500     | 1.1129        | -                          | -                     | -                           | -                            |
| 0.3134     | 25000     | 1.0901        | -                          | -                     | -                           | -                            |
| 0.3197     | 25500     | 1.1087        | -                          | -                     | -                           | -                            |
| 0.3259     | 26000     | 1.0921        | 0.2769                     | 0.3349                | 0.5038                      | 0.3719                       |
| 0.3322     | 26500     | 1.0881        | -                          | -                     | -                           | -                            |
| 0.3385     | 27000     | 1.0984        | -                          | -                     | -                           | -                            |
| 0.3447     | 27500     | 1.105         | -                          | -                     | -                           | -                            |
| 0.3510     | 28000     | 1.1022        | 0.2766                     | 0.3353                | 0.5043                      | 0.3721                       |
| 0.3573     | 28500     | 1.0925        | -                          | -                     | -                           | -                            |
| 0.3635     | 29000     | 1.1009        | -                          | -                     | -                           | -                            |
| 0.3698     | 29500     | 1.1043        | -                          | -                     | -                           | -                            |
| 0.3761     | 30000     | 1.0893        | 0.2772                     | 0.3279                | 0.5055                      | 0.3702                       |
| 0.3823     | 30500     | 1.1084        | -                          | -                     | -                           | -                            |
| 0.3886     | 31000     | 1.0885        | -                          | -                     | -                           | -                            |
| 0.3949     | 31500     | 1.1046        | -                          | -                     | -                           | -                            |
| 0.4012     | 32000     | 1.0925        | 0.2775                     | 0.3273                | 0.5052                      | 0.3700                       |
| 0.4074     | 32500     | 1.1126        | -                          | -                     | -                           | -                            |
| 0.4137     | 33000     | 1.0946        | -                          | -                     | -                           | -                            |
| 0.4200     | 33500     | 1.0979        | -                          | -                     | -                           | -                            |
| 0.4262     | 34000     | 1.0852        | 0.2775                     | 0.3273                | 0.5098                      | 0.3715                       |
| 0.4325     | 34500     | 1.0925        | -                          | -                     | -                           | -                            |
| 0.4388     | 35000     | 1.0919        | -                          | -                     | -                           | -                            |
| 0.4450     | 35500     | 1.0878        | -                          | -                     | -                           | -                            |
| 0.4513     | 36000     | 1.0775        | 0.2781                     | 0.3273                | 0.5098                      | 0.3717                       |
| 0.4576     | 36500     | 1.0898        | -                          | -                     | -                           | -                            |
| 0.4638     | 37000     | 1.0858        | -                          | -                     | -                           | -                            |
| 0.4701     | 37500     | 1.0822        | -                          | -                     | -                           | -                            |
| 0.4764     | 38000     | 1.0831        | 0.2849                     | 0.3273                | 0.5098                      | 0.3740                       |
| 0.4826     | 38500     | 1.0886        | -                          | -                     | -                           | -                            |
| 0.4889     | 39000     | 1.089         | -                          | -                     | -                           | -                            |
| 0.4952     | 39500     | 1.0986        | -                          | -                     | -                           | -                            |
| 0.5014     | 40000     | 1.0885        | 0.2775                     | 0.3276                | 0.5101                      | 0.3717                       |
| 0.5077     | 40500     | 1.0903        | -                          | -                     | -                           | -                            |
| 0.5140     | 41000     | 1.0883        | -                          | -                     | -                           | -                            |
| 0.5202     | 41500     | 1.1009        | -                          | -                     | -                           | -                            |
| 0.5265     | 42000     | 1.0909        | 0.2781                     | 0.3276                | 0.5101                      | 0.3719                       |
| 0.5328     | 42500     | 1.0843        | -                          | -                     | -                           | -                            |
| 0.5390     | 43000     | 1.086         | -                          | -                     | -                           | -                            |
| 0.5453     | 43500     | 1.0762        | -                          | -                     | -                           | -                            |
| 0.5516     | 44000     | 1.0781        | 0.2781                     | 0.3276                | 0.5101                      | 0.3719                       |
| 0.5579     | 44500     | 1.0952        | -                          | -                     | -                           | -                            |
| 0.5641     | 45000     | 1.0814        | -                          | -                     | -                           | -                            |
| 0.5704     | 45500     | 1.0815        | -                          | -                     | -                           | -                            |
| **0.5767** | **46000** | **1.0889**    | **0.2849**                 | **0.3276**            | **0.5101**                  | **0.3742**                   |
| 0.5829     | 46500     | 1.087         | -                          | -                     | -                           | -                            |
| 0.5892     | 47000     | 1.0786        | -                          | -                     | -                           | -                            |
| 0.5955     | 47500     | 1.0846        | -                          | -                     | -                           | -                            |
| 0.6017     | 48000     | 1.095         | 0.2849                     | 0.3273                | 0.5101                      | 0.3741                       |
| 0.6080     | 48500     | 1.0839        | -                          | -                     | -                           | -                            |
| 0.6143     | 49000     | 1.0899        | -                          | -                     | -                           | -                            |
| 0.6205     | 49500     | 1.0903        | -                          | -                     | -                           | -                            |
| 0.6268     | 50000     | 1.0915        | 0.2775                     | 0.3273                | 0.5098                      | 0.3715                       |
| 0.6331     | 50500     | 1.0764        | -                          | -                     | -                           | -                            |
| 0.6393     | 51000     | 1.1006        | -                          | -                     | -                           | -                            |
| 0.6456     | 51500     | 1.0968        | -                          | -                     | -                           | -                            |
| 0.6519     | 52000     | 1.084         | 0.2849                     | 0.3273                | 0.5101                      | 0.3741                       |
| 0.6581     | 52500     | 1.0892        | -                          | -                     | -                           | -                            |
| 0.6644     | 53000     | 1.09          | -                          | -                     | -                           | -                            |
| 0.6707     | 53500     | 1.0946        | -                          | -                     | -                           | -                            |
| 0.6769     | 54000     | 1.0861        | 0.2775                     | 0.3273                | 0.5098                      | 0.3715                       |
| 0.6832     | 54500     | 1.0962        | -                          | -                     | -                           | -                            |
| 0.6895     | 55000     | 1.0841        | -                          | -                     | -                           | -                            |
| 0.6958     | 55500     | 1.0894        | -                          | -                     | -                           | -                            |
| 0.7020     | 56000     | 1.082         | 0.2775                     | 0.3273                | 0.5098                      | 0.3715                       |
| 0.7083     | 56500     | 1.0939        | -                          | -                     | -                           | -                            |
| 0.7146     | 57000     | 1.096         | -                          | -                     | -                           | -                            |
| 0.7208     | 57500     | 1.1048        | -                          | -                     | -                           | -                            |
| 0.7271     | 58000     | 1.0853        | 0.2849                     | 0.3273                | 0.5098                      | 0.3740                       |
| 0.7334     | 58500     | 1.0893        | -                          | -                     | -                           | -                            |
| 0.7396     | 59000     | 1.0946        | -                          | -                     | -                           | -                            |
| 0.7459     | 59500     | 1.0985        | -                          | -                     | -                           | -                            |
| 0.7522     | 60000     | 1.099         | 0.2849                     | 0.3273                | 0.5098                      | 0.3740                       |
| 0.7584     | 60500     | 1.0972        | -                          | -                     | -                           | -                            |
| 0.7647     | 61000     | 1.0812        | -                          | -                     | -                           | -                            |
| 0.7710     | 61500     | 1.0744        | -                          | -                     | -                           | -                            |
| 0.7772     | 62000     | 1.0781        | 0.2775                     | 0.3273                | 0.5101                      | 0.3716                       |
| 0.7835     | 62500     | 1.0823        | -                          | -                     | -                           | -                            |
| 0.7898     | 63000     | 1.0819        | -                          | -                     | -                           | -                            |
| 0.7960     | 63500     | 1.0911        | -                          | -                     | -                           | -                            |
| 0.8023     | 64000     | 1.1069        | 0.2775                     | 0.3273                | 0.5098                      | 0.3715                       |
| 0.8086     | 64500     | 1.0786        | -                          | -                     | -                           | -                            |
| 0.8148     | 65000     | 1.0872        | -                          | -                     | -                           | -                            |
| 0.8211     | 65500     | 1.0776        | -                          | -                     | -                           | -                            |
| 0.8274     | 66000     | 1.0849        | 0.2849                     | 0.3273                | 0.5098                      | 0.3740                       |
| 0.8336     | 66500     | 1.0778        | -                          | -                     | -                           | -                            |
| 0.8399     | 67000     | 1.0972        | -                          | -                     | -                           | -                            |
| 0.8462     | 67500     | 1.0835        | -                          | -                     | -                           | -                            |
| 0.8525     | 68000     | 1.0927        | 0.2849                     | 0.3273                | 0.5098                      | 0.3740                       |
| 0.8587     | 68500     | 1.082         | -                          | -                     | -                           | -                            |
| 0.8650     | 69000     | 1.0742        | -                          | -                     | -                           | -                            |
| 0.8713     | 69500     | 1.0886        | -                          | -                     | -                           | -                            |
| 0.8775     | 70000     | 1.0828        | 0.2775                     | 0.3273                | 0.5098                      | 0.3715                       |
| 0.8838     | 70500     | 1.0863        | -                          | -                     | -                           | -                            |
| 0.8901     | 71000     | 1.0905        | -                          | -                     | -                           | -                            |
| 0.8963     | 71500     | 1.0856        | -                          | -                     | -                           | -                            |
| 0.9026     | 72000     | 1.0946        | 0.2775                     | 0.3273                | 0.5098                      | 0.3715                       |
| 0.9089     | 72500     | 1.102         | -                          | -                     | -                           | -                            |
| 0.9151     | 73000     | 1.0819        | -                          | -                     | -                           | -                            |
| 0.9214     | 73500     | 1.0884        | -                          | -                     | -                           | -                            |
| 0.9277     | 74000     | 1.0888        | 0.2775                     | 0.3273                | 0.5098                      | 0.3715                       |
| 0.9339     | 74500     | 1.0756        | -                          | -                     | -                           | -                            |
| 0.9402     | 75000     | 1.0767        | -                          | -                     | -                           | -                            |
| 0.9465     | 75500     | 1.0821        | -                          | -                     | -                           | -                            |
| 0.9527     | 76000     | 1.0891        | 0.2775                     | 0.3273                | 0.5098                      | 0.3715                       |
| 0.9590     | 76500     | 1.0923        | -                          | -                     | -                           | -                            |
| 0.9653     | 77000     | 1.0765        | -                          | -                     | -                           | -                            |
| 0.9715     | 77500     | 1.075         | -                          | -                     | -                           | -                            |
| 0.9778     | 78000     | 1.0902        | 0.2775                     | 0.3273                | 0.5098                      | 0.3715                       |
| 0.9841     | 78500     | 1.0833        | -                          | -                     | -                           | -                            |
| 0.9903     | 79000     | 1.0746        | -                          | -                     | -                           | -                            |
| 0.9966     | 79500     | 1.0872        | -                          | -                     | -                           | -                            |

* The bold row denotes the saved checkpoint.
</details>

### Framework Versions
- Python: 3.11.13
- Sentence Transformers: 5.0.0
- Transformers: 4.53.1
- PyTorch: 2.7.1+cu128
- Accelerate: 1.8.1
- Datasets: 4.0.0
- Tokenizers: 0.21.2

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### CachedMultipleNegativesRankingLoss
```bibtex
@misc{gao2021scaling,
    title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
    author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
    year={2021},
    eprint={2101.06983},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->