File size: 67,272 Bytes
18b6fa6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 |
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:20420717
- loss:CachedMultipleNegativesRankingLoss
- loss:CachedMultipleNegativesSymmetricRankingLoss
widget:
- source_sentence: what is the difference between body spray and eau de toilette?
sentences:
- Eau de Toilette (EDT) is ideal for those that may find the EDP or Perfume oil
too strong, with 7%-12% fragrance concentration in alcohol. Gives four to five
hours wear. Body Mist is a light refreshing fragrance perfect for layering with
other products from the same family. 3-5% fragrance concentration in alcohol.
- To join the Army as an enlisted member you must usually take the Armed Services
Vocational Aptitude Battery (ASVAB) test and get a good score. The maximum ASVAB
score is 99. For enlistment into the Army you must get a minimum ASVAB score of
31.
- 'Points needed to redeem rewards with Redbox Perks: 1,500 points = FREE 1-night
DVD rental. 1,750 points = FREE Blu-ray rental. 2,500 points = FREE 1-night Game
rental.'
- source_sentence: hurtles definition
sentences:
- BCIP-NBT Solution is a 5-bromo, 4-chloro, 3-indolylphosphate (BCIP)/Nitro-Blue
Tetrazolium (NBT) substrate, used for the localization of alkaline phosphatase
(AP) labeled probes on western, northern, southern and dot blots.
- 'Definition of hurtle for English Language Learners. : 1 to move or fall with
great speed and force. : 2 to cause (something or someone) to move or go with
great speed and force.'
- 10 most extreme places on Earth. A dongle is a piece of hardware that attaches
to a computer and allows a piece of secured software to run. The device does not
contain the software in its entirety, but rather is an electronic key that unlocks
the program on a computer.0 most extreme places on Earth. A dongle is a piece
of hardware that attaches to a computer and allows a piece of secured software
to run. The device does not contain the software in its entirety, but rather is
an electronic key that unlocks the program on a computer.
- source_sentence: what is nbt solution used for
sentences:
- Nembutal Sodium Solution [edit]. Nembutal Sodium Solution (pentobarbital sodium
injection) is a sterile solution for intravenous or intramuscular injection. Each
mL contains pentobarbital sodium 50 mg, in a vehicle of propylene glycol, 40%,
alcohol, 10% and water for injection, to volume.
- BCIP-NBT Solution is a 5-bromo, 4-chloro, 3-indolylphosphate (BCIP)/Nitro-Blue
Tetrazolium (NBT) substrate, used for the localization of alkaline phosphatase
(AP) labeled probes on western, northern, southern and dot blots.
- 'Definition of hurtle for English Language Learners. : 1 to move or fall with
great speed and force. : 2 to cause (something or someone) to move or go with
great speed and force.'
- source_sentence: definition doula
sentences:
- "The Trivago Guy, aka Tim Williams, the Houston-born actor and Berlin resident\
\ who stars in hotel-search site Trivagoâ\x80\x99s TV commercials in North America,\
\ says heâ\x80\x99s perplexed and amused about all the attention heâ\x80\x99s\
\ getting from the TV spots, and heâ\x80\x99s enjoying every minute of it. â\x80\
\x9CBring it on, I love it,â\x80\x9D Williams says."
- Average Length of Doula Study. Typically, a birth doula needs to finish 7 to 12
hours of childbirth education, 16 hours of birth doula training, and attend at
two to five births. A postpartum doula usually attends about 27 hours of postpartum
doula education and assists two or more women with postpartum support.
- Doula. A doula, is a nonmedical person who assists a woman before, during, or
after childbirth, as well as her partner and/or family by providing information,
physical assistance, and emotional support.
- source_sentence: who is catch me if you can based on
sentences:
- Catch Me If You Can Catch Me If You Can is a 2002 American biographical crime
film directed and produced by Steven Spielberg from a screenplay by Jeff Nathanson.
The film is based on the life of Frank Abagnale, who, before his 19th birthday,
successfully performed cons worth millions of dollars by posing as a Pan American
World Airways pilot, a Georgia doctor and a Louisiana parish prosecutor. His primary
crime was check fraud; he became so experienced that the FBI eventually turned
to him for help in catching other checking forgers. The film stars Leonardo DiCaprio
and Tom Hanks, with Christopher Walken, Martin Sheen, and Nathalie Baye in supporting
roles.
- Ghost Rider (Johnny Blaze) Centurious appeared, stealing Blaze's soul into his
soul crystal. Zarathos, weakened from the ordeal used the last of his strength
to shatter the crystal, freeing Blaze's soul and many others contained inside
of the crystal as well. Before the crystal was reformed, Centurious was absorbed
into the crystal. Zarathos followed him into the crystal, freeing Blaze from the
curse, restoring his soul, and ending his time as the Ghost Rider.[31]
- Colonial Brazil In contrast to the neighboring Spanish possessions, which had
several viceroyalties with jurisdiction initially over New Spain (Mexico) and
Peru, and in the eighteenth century expanded to viceroyalties of Rio de la Plata
and New Granada, the Portuguese colony of Brazil was settled mainly in the coastal
area by the Portuguese and a large black slave population working sugar plantations
and mines. The boom and bust economic cycles were linked to export products. Brazil's
sugar age, with the development of plantation slavery, merchants serving as middle
men between production sites, Brazilian ports, and Europe was undermined by the
growth of the sugar industry in the Caribbean on islands that European powers
seized from Spain. Gold and diamonds were discovered and mined in southern Brazil
through the end of the colonial era. Brazilian cities were largely port cities
and the colonial administrative capital was moved several times in response to
the rise and fall of export products' importance. Unlike Spanish America that
fragmented in many republics, Brazil remained as a single administrative unit
with a monarch, giving rise to the largest country in Latin America. Like Spanish
America with European Spanish, Brazil had linguistic integrity of Portuguese.
Both Spanish America and Brazil were Roman Catholic.
datasets:
- sentence-transformers/msmarco-msmarco-distilbert-base-v3
- sentence-transformers/gooaq
- sentence-transformers/natural-questions
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: ModernBERT-small-1.5-Retrieval-BEIR-Tuned
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: cosine_accuracy@1
value: 0.08
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.3
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.36
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.08
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.09999999999999998
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.07200000000000001
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05000000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.08
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.3
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.36
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2774734521140046
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.20799206349206348
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.22779015501462538
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: cosine_accuracy@1
value: 0.16
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.32
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.44
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.16
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.10666666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.08800000000000001
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.06000000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.14
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.29
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.4
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.55
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.3273011574644101
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.27730158730158727
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2638075437451129
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoHotpotQA
type: NanoHotpotQA
metrics:
- type: cosine_accuracy@1
value: 0.52
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.72
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.78
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.84
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.52
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.29333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19199999999999995
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.11799999999999997
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.26
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.44
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.48
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.59
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5097756918840387
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.625547619047619
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4238786723152704
name: Cosine Map@100
- task:
type: nano-beir
name: Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: cosine_accuracy@1
value: 0.25333333333333335
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4466666666666666
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5266666666666667
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6466666666666666
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.25333333333333335
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.16666666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11733333333333333
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.076
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.16
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.3433333333333333
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.41333333333333333
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5466666666666667
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.3715167671541511
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.37028042328042327
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3051587903583362
name: Cosine Map@100
---
# ModernBERT-small-1.5-Retrieval-BEIR-Tuned
This is a [sentence-transformers](https://www.SBERT.net) model trained on the [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) and [natural_questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) datasets. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 1024 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3)
- [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
- [natural_questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'who is catch me if you can based on',
'Catch Me If You Can Catch Me If You Can is a 2002 American biographical crime film directed and produced by Steven Spielberg from a screenplay by Jeff Nathanson. The film is based on the life of Frank Abagnale, who, before his 19th birthday, successfully performed cons worth millions of dollars by posing as a Pan American World Airways pilot, a Georgia doctor and a Louisiana parish prosecutor. His primary crime was check fraud; he became so experienced that the FBI eventually turned to him for help in catching other checking forgers. The film stars Leonardo DiCaprio and Tom Hanks, with Christopher Walken, Martin Sheen, and Nathalie Baye in supporting roles.',
"Colonial Brazil In contrast to the neighboring Spanish possessions, which had several viceroyalties with jurisdiction initially over New Spain (Mexico) and Peru, and in the eighteenth century expanded to viceroyalties of Rio de la Plata and New Granada, the Portuguese colony of Brazil was settled mainly in the coastal area by the Portuguese and a large black slave population working sugar plantations and mines. The boom and bust economic cycles were linked to export products. Brazil's sugar age, with the development of plantation slavery, merchants serving as middle men between production sites, Brazilian ports, and Europe was undermined by the growth of the sugar industry in the Caribbean on islands that European powers seized from Spain. Gold and diamonds were discovered and mined in southern Brazil through the end of the colonial era. Brazilian cities were largely port cities and the colonial administrative capital was moved several times in response to the rise and fall of export products' importance. Unlike Spanish America that fragmented in many republics, Brazil remained as a single administrative unit with a monarch, giving rise to the largest country in Latin America. Like Spanish America with European Spanish, Brazil had linguistic integrity of Portuguese. Both Spanish America and Brazil were Roman Catholic.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.5555, -0.1763],
# [ 0.5555, 1.0000, -0.0652],
# [-0.1763, -0.0652, 1.0000]])
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `NanoMSMARCO`, `NanoNQ` and `NanoHotpotQA`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | NanoMSMARCO | NanoNQ | NanoHotpotQA |
|:--------------------|:------------|:-----------|:-------------|
| cosine_accuracy@1 | 0.08 | 0.16 | 0.52 |
| cosine_accuracy@3 | 0.3 | 0.32 | 0.72 |
| cosine_accuracy@5 | 0.36 | 0.44 | 0.78 |
| cosine_accuracy@10 | 0.5 | 0.6 | 0.84 |
| cosine_precision@1 | 0.08 | 0.16 | 0.52 |
| cosine_precision@3 | 0.1 | 0.1067 | 0.2933 |
| cosine_precision@5 | 0.072 | 0.088 | 0.192 |
| cosine_precision@10 | 0.05 | 0.06 | 0.118 |
| cosine_recall@1 | 0.08 | 0.14 | 0.26 |
| cosine_recall@3 | 0.3 | 0.29 | 0.44 |
| cosine_recall@5 | 0.36 | 0.4 | 0.48 |
| cosine_recall@10 | 0.5 | 0.55 | 0.59 |
| **cosine_ndcg@10** | **0.2775** | **0.3273** | **0.5098** |
| cosine_mrr@10 | 0.208 | 0.2773 | 0.6255 |
| cosine_map@100 | 0.2278 | 0.2638 | 0.4239 |
#### Nano BEIR
* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"MSMARCO",
"NQ",
"HotpotQA"
]
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.2533 |
| cosine_accuracy@3 | 0.4467 |
| cosine_accuracy@5 | 0.5267 |
| cosine_accuracy@10 | 0.6467 |
| cosine_precision@1 | 0.2533 |
| cosine_precision@3 | 0.1667 |
| cosine_precision@5 | 0.1173 |
| cosine_precision@10 | 0.076 |
| cosine_recall@1 | 0.16 |
| cosine_recall@3 | 0.3433 |
| cosine_recall@5 | 0.4133 |
| cosine_recall@10 | 0.5467 |
| **cosine_ndcg@10** | **0.3715** |
| cosine_mrr@10 | 0.3703 |
| cosine_map@100 | 0.3052 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Datasets
#### msmarco
* Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 17,307,990 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 9.57 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 44 tokens</li><li>mean: 83.39 tokens</li><li>max: 211 tokens</li></ul> | <ul><li>min: 24 tokens</li><li>mean: 83.62 tokens</li><li>max: 268 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:----------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what are the liberal arts?</code> | <code>liberal arts. 1. the academic course of instruction at a college intended to provide general knowledge and comprising the arts, humanities, natural sciences, and social sciences, as opposed to professional or technical subjects.</code> | <code>The liberal arts education at the secondary school level prepares the student for higher education at a university. They are thus meant for the more academically minded students. In addition to the usual curriculum, students of a liberal arts education often study Latin and Ancient Greek. Some liberal arts education provide general education, others have a specific focus.</code> |
| <code>what are the liberal arts?</code> | <code>liberal arts. 1. the academic course of instruction at a college intended to provide general knowledge and comprising the arts, humanities, natural sciences, and social sciences, as opposed to professional or technical subjects.</code> | <code>Liberal Arts. Upon completion of the Liberal Arts degree, students will be able to express ideas in coherent, creative, and appropriate forms, orally and in writing. Students will be able to apply their reading abilities in order to interconnect an understanding of resources to academic, professional, and personal interests.</code> |
| <code>what are the liberal arts?</code> | <code>liberal arts. 1. the academic course of instruction at a college intended to provide general knowledge and comprising the arts, humanities, natural sciences, and social sciences, as opposed to professional or technical subjects.</code> | <code>Rather than preparing students for a specific career, liberal arts programs focus on cultural literacy and hone communication and analytical skills. They often cover various disciplines, ranging from the humanities to social sciences. 1 Program Levels in Liberal Arts: Associate degree, Bachelor's degree, Master's degree.</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 64
}
```
#### gooaq
* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 3,012,496 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 12.19 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 58.34 tokens</li><li>max: 124 tokens</li></ul> |
* Samples:
| anchor | positive |
|:---------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>is toprol xl the same as metoprolol?</code> | <code>Metoprolol succinate is also known by the brand name Toprol XL. It is the extended-release form of metoprolol. Metoprolol succinate is approved to treat high blood pressure, chronic chest pain, and congestive heart failure.</code> |
| <code>are you experienced cd steve hoffman?</code> | <code>The Are You Experienced album was apparently mastered from the original stereo UK master tapes (according to Steve Hoffman - one of the very few who has heard both the master tapes and the CDs produced over the years). ... The CD booklets were a little sparse, but at least they stayed true to the album's original design.</code> |
| <code>how are babushka dolls made?</code> | <code>Matryoshka dolls are made of wood from lime, balsa, alder, aspen, and birch trees; lime is probably the most common wood type. ... After cutting, the trees are stripped of most of their bark, although a few inner rings of bark are left to bind the wood and keep it from splitting.</code> |
* Loss: [<code>CachedMultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativessymmetricrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 64
}
```
#### natural_questions
* Dataset: [natural_questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 100,231 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 12.47 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 138.32 tokens</li><li>max: 556 tokens</li></ul> |
* Samples:
| anchor | positive |
|:----------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>when did richmond last play in a preliminary final</code> | <code>Richmond Football Club Richmond began 2017 with 5 straight wins, a feat it had not achieved since 1995. A series of close losses hampered the Tigers throughout the middle of the season, including a 5-point loss to the Western Bulldogs, 2-point loss to Fremantle, and a 3-point loss to the Giants. Richmond ended the season strongly with convincing victories over Fremantle and St Kilda in the final two rounds, elevating the club to 3rd on the ladder. Richmond's first final of the season against the Cats at the MCG attracted a record qualifying final crowd of 95,028; the Tigers won by 51 points. Having advanced to the first preliminary finals for the first time since 2001, Richmond defeated Greater Western Sydney by 36 points in front of a crowd of 94,258 to progress to the Grand Final against Adelaide, their first Grand Final appearance since 1982. The attendance was 100,021, the largest crowd to a grand final since 1986. The Crows led at quarter time and led by as many as 13, but the Tig...</code> |
| <code>who sang what in the world's come over you</code> | <code>Jack Scott (singer) At the beginning of 1960, Scott again changed record labels, this time to Top Rank Records.[1] He then recorded four Billboard Hot 100 hits – "What in the World's Come Over You" (#5), "Burning Bridges" (#3) b/w "Oh Little One" (#34), and "It Only Happened Yesterday" (#38).[1] "What in the World's Come Over You" was Scott's second gold disc winner.[6] Scott continued to record and perform during the 1960s and 1970s.[1] His song "You're Just Gettin' Better" reached the country charts in 1974.[1] In May 1977, Scott recorded a Peel session for BBC Radio 1 disc jockey, John Peel.</code> |
| <code>who produces the most wool in the world</code> | <code>Wool Global wool production is about 2 million tonnes per year, of which 60% goes into apparel. Wool comprises ca 3% of the global textile market, but its value is higher owing to dying and other modifications of the material.[1] Australia is a leading producer of wool which is mostly from Merino sheep but has been eclipsed by China in terms of total weight.[30] New Zealand (2016) is the third-largest producer of wool, and the largest producer of crossbred wool. Breeds such as Lincoln, Romney, Drysdale, and Elliotdale produce coarser fibers, and wool from these sheep is usually used for making carpets.</code> |
* Loss: [<code>CachedMultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativessymmetricrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 64
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 256
- `weight_decay`: 0.01
- `num_train_epochs`: 1
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `bf16_full_eval`: True
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: True
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | NanoMSMARCO_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoHotpotQA_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
|:----------:|:---------:|:-------------:|:--------------------------:|:---------------------:|:---------------------------:|:----------------------------:|
| -1 | -1 | - | 0.2397 | 0.3332 | 0.4767 | 0.3499 |
| 0.0063 | 500 | 1.6152 | - | - | - | - |
| 0.0125 | 1000 | 1.6149 | - | - | - | - |
| 0.0188 | 1500 | 1.5833 | - | - | - | - |
| 0.0251 | 2000 | 1.58 | 0.2449 | 0.3259 | 0.4793 | 0.3500 |
| 0.0313 | 2500 | 1.5475 | - | - | - | - |
| 0.0376 | 3000 | 1.5432 | - | - | - | - |
| 0.0439 | 3500 | 1.5067 | - | - | - | - |
| 0.0501 | 4000 | 1.4909 | 0.2474 | 0.3124 | 0.4786 | 0.3461 |
| 0.0564 | 4500 | 1.4532 | - | - | - | - |
| 0.0627 | 5000 | 1.425 | - | - | - | - |
| 0.0689 | 5500 | 1.4394 | - | - | - | - |
| 0.0752 | 6000 | 1.42 | 0.2532 | 0.3149 | 0.4895 | 0.3525 |
| 0.0815 | 6500 | 1.3737 | - | - | - | - |
| 0.0878 | 7000 | 1.3755 | - | - | - | - |
| 0.0940 | 7500 | 1.3194 | - | - | - | - |
| 0.1003 | 8000 | 1.3143 | 0.2660 | 0.3163 | 0.4823 | 0.3548 |
| 0.1066 | 8500 | 1.3038 | - | - | - | - |
| 0.1128 | 9000 | 1.2815 | - | - | - | - |
| 0.1191 | 9500 | 1.2291 | - | - | - | - |
| 0.1254 | 10000 | 1.24 | 0.2687 | 0.3407 | 0.4876 | 0.3657 |
| 0.1316 | 10500 | 1.2383 | - | - | - | - |
| 0.1379 | 11000 | 1.2116 | - | - | - | - |
| 0.1442 | 11500 | 1.1967 | - | - | - | - |
| 0.1504 | 12000 | 1.1712 | 0.2697 | 0.3436 | 0.4888 | 0.3674 |
| 0.1567 | 12500 | 1.1781 | - | - | - | - |
| 0.1630 | 13000 | 1.1798 | - | - | - | - |
| 0.1692 | 13500 | 1.1486 | - | - | - | - |
| 0.1755 | 14000 | 1.156 | 0.2761 | 0.3490 | 0.4895 | 0.3716 |
| 0.1818 | 14500 | 1.1622 | - | - | - | - |
| 0.1880 | 15000 | 1.1638 | - | - | - | - |
| 0.1943 | 15500 | 1.1447 | - | - | - | - |
| 0.2006 | 16000 | 1.1353 | 0.2783 | 0.3427 | 0.4967 | 0.3726 |
| 0.2068 | 16500 | 1.1397 | - | - | - | - |
| 0.2131 | 17000 | 1.1346 | - | - | - | - |
| 0.2194 | 17500 | 1.1345 | - | - | - | - |
| 0.2256 | 18000 | 1.13 | 0.2697 | 0.3424 | 0.5051 | 0.3724 |
| 0.2319 | 18500 | 1.1145 | - | - | - | - |
| 0.2382 | 19000 | 1.1215 | - | - | - | - |
| 0.2445 | 19500 | 1.1193 | - | - | - | - |
| 0.2507 | 20000 | 1.1329 | 0.2795 | 0.3363 | 0.4992 | 0.3717 |
| 0.2570 | 20500 | 1.1239 | - | - | - | - |
| 0.2633 | 21000 | 1.0929 | - | - | - | - |
| 0.2695 | 21500 | 1.1079 | - | - | - | - |
| 0.2758 | 22000 | 1.1192 | 0.2792 | 0.3278 | 0.5054 | 0.3708 |
| 0.2821 | 22500 | 1.1252 | - | - | - | - |
| 0.2883 | 23000 | 1.1089 | - | - | - | - |
| 0.2946 | 23500 | 1.1032 | - | - | - | - |
| 0.3009 | 24000 | 1.0974 | 0.2769 | 0.3372 | 0.5043 | 0.3728 |
| 0.3071 | 24500 | 1.1129 | - | - | - | - |
| 0.3134 | 25000 | 1.0901 | - | - | - | - |
| 0.3197 | 25500 | 1.1087 | - | - | - | - |
| 0.3259 | 26000 | 1.0921 | 0.2769 | 0.3349 | 0.5038 | 0.3719 |
| 0.3322 | 26500 | 1.0881 | - | - | - | - |
| 0.3385 | 27000 | 1.0984 | - | - | - | - |
| 0.3447 | 27500 | 1.105 | - | - | - | - |
| 0.3510 | 28000 | 1.1022 | 0.2766 | 0.3353 | 0.5043 | 0.3721 |
| 0.3573 | 28500 | 1.0925 | - | - | - | - |
| 0.3635 | 29000 | 1.1009 | - | - | - | - |
| 0.3698 | 29500 | 1.1043 | - | - | - | - |
| 0.3761 | 30000 | 1.0893 | 0.2772 | 0.3279 | 0.5055 | 0.3702 |
| 0.3823 | 30500 | 1.1084 | - | - | - | - |
| 0.3886 | 31000 | 1.0885 | - | - | - | - |
| 0.3949 | 31500 | 1.1046 | - | - | - | - |
| 0.4012 | 32000 | 1.0925 | 0.2775 | 0.3273 | 0.5052 | 0.3700 |
| 0.4074 | 32500 | 1.1126 | - | - | - | - |
| 0.4137 | 33000 | 1.0946 | - | - | - | - |
| 0.4200 | 33500 | 1.0979 | - | - | - | - |
| 0.4262 | 34000 | 1.0852 | 0.2775 | 0.3273 | 0.5098 | 0.3715 |
| 0.4325 | 34500 | 1.0925 | - | - | - | - |
| 0.4388 | 35000 | 1.0919 | - | - | - | - |
| 0.4450 | 35500 | 1.0878 | - | - | - | - |
| 0.4513 | 36000 | 1.0775 | 0.2781 | 0.3273 | 0.5098 | 0.3717 |
| 0.4576 | 36500 | 1.0898 | - | - | - | - |
| 0.4638 | 37000 | 1.0858 | - | - | - | - |
| 0.4701 | 37500 | 1.0822 | - | - | - | - |
| 0.4764 | 38000 | 1.0831 | 0.2849 | 0.3273 | 0.5098 | 0.3740 |
| 0.4826 | 38500 | 1.0886 | - | - | - | - |
| 0.4889 | 39000 | 1.089 | - | - | - | - |
| 0.4952 | 39500 | 1.0986 | - | - | - | - |
| 0.5014 | 40000 | 1.0885 | 0.2775 | 0.3276 | 0.5101 | 0.3717 |
| 0.5077 | 40500 | 1.0903 | - | - | - | - |
| 0.5140 | 41000 | 1.0883 | - | - | - | - |
| 0.5202 | 41500 | 1.1009 | - | - | - | - |
| 0.5265 | 42000 | 1.0909 | 0.2781 | 0.3276 | 0.5101 | 0.3719 |
| 0.5328 | 42500 | 1.0843 | - | - | - | - |
| 0.5390 | 43000 | 1.086 | - | - | - | - |
| 0.5453 | 43500 | 1.0762 | - | - | - | - |
| 0.5516 | 44000 | 1.0781 | 0.2781 | 0.3276 | 0.5101 | 0.3719 |
| 0.5579 | 44500 | 1.0952 | - | - | - | - |
| 0.5641 | 45000 | 1.0814 | - | - | - | - |
| 0.5704 | 45500 | 1.0815 | - | - | - | - |
| **0.5767** | **46000** | **1.0889** | **0.2849** | **0.3276** | **0.5101** | **0.3742** |
| 0.5829 | 46500 | 1.087 | - | - | - | - |
| 0.5892 | 47000 | 1.0786 | - | - | - | - |
| 0.5955 | 47500 | 1.0846 | - | - | - | - |
| 0.6017 | 48000 | 1.095 | 0.2849 | 0.3273 | 0.5101 | 0.3741 |
| 0.6080 | 48500 | 1.0839 | - | - | - | - |
| 0.6143 | 49000 | 1.0899 | - | - | - | - |
| 0.6205 | 49500 | 1.0903 | - | - | - | - |
| 0.6268 | 50000 | 1.0915 | 0.2775 | 0.3273 | 0.5098 | 0.3715 |
| 0.6331 | 50500 | 1.0764 | - | - | - | - |
| 0.6393 | 51000 | 1.1006 | - | - | - | - |
| 0.6456 | 51500 | 1.0968 | - | - | - | - |
| 0.6519 | 52000 | 1.084 | 0.2849 | 0.3273 | 0.5101 | 0.3741 |
| 0.6581 | 52500 | 1.0892 | - | - | - | - |
| 0.6644 | 53000 | 1.09 | - | - | - | - |
| 0.6707 | 53500 | 1.0946 | - | - | - | - |
| 0.6769 | 54000 | 1.0861 | 0.2775 | 0.3273 | 0.5098 | 0.3715 |
| 0.6832 | 54500 | 1.0962 | - | - | - | - |
| 0.6895 | 55000 | 1.0841 | - | - | - | - |
| 0.6958 | 55500 | 1.0894 | - | - | - | - |
| 0.7020 | 56000 | 1.082 | 0.2775 | 0.3273 | 0.5098 | 0.3715 |
| 0.7083 | 56500 | 1.0939 | - | - | - | - |
| 0.7146 | 57000 | 1.096 | - | - | - | - |
| 0.7208 | 57500 | 1.1048 | - | - | - | - |
| 0.7271 | 58000 | 1.0853 | 0.2849 | 0.3273 | 0.5098 | 0.3740 |
| 0.7334 | 58500 | 1.0893 | - | - | - | - |
| 0.7396 | 59000 | 1.0946 | - | - | - | - |
| 0.7459 | 59500 | 1.0985 | - | - | - | - |
| 0.7522 | 60000 | 1.099 | 0.2849 | 0.3273 | 0.5098 | 0.3740 |
| 0.7584 | 60500 | 1.0972 | - | - | - | - |
| 0.7647 | 61000 | 1.0812 | - | - | - | - |
| 0.7710 | 61500 | 1.0744 | - | - | - | - |
| 0.7772 | 62000 | 1.0781 | 0.2775 | 0.3273 | 0.5101 | 0.3716 |
| 0.7835 | 62500 | 1.0823 | - | - | - | - |
| 0.7898 | 63000 | 1.0819 | - | - | - | - |
| 0.7960 | 63500 | 1.0911 | - | - | - | - |
| 0.8023 | 64000 | 1.1069 | 0.2775 | 0.3273 | 0.5098 | 0.3715 |
| 0.8086 | 64500 | 1.0786 | - | - | - | - |
| 0.8148 | 65000 | 1.0872 | - | - | - | - |
| 0.8211 | 65500 | 1.0776 | - | - | - | - |
| 0.8274 | 66000 | 1.0849 | 0.2849 | 0.3273 | 0.5098 | 0.3740 |
| 0.8336 | 66500 | 1.0778 | - | - | - | - |
| 0.8399 | 67000 | 1.0972 | - | - | - | - |
| 0.8462 | 67500 | 1.0835 | - | - | - | - |
| 0.8525 | 68000 | 1.0927 | 0.2849 | 0.3273 | 0.5098 | 0.3740 |
| 0.8587 | 68500 | 1.082 | - | - | - | - |
| 0.8650 | 69000 | 1.0742 | - | - | - | - |
| 0.8713 | 69500 | 1.0886 | - | - | - | - |
| 0.8775 | 70000 | 1.0828 | 0.2775 | 0.3273 | 0.5098 | 0.3715 |
| 0.8838 | 70500 | 1.0863 | - | - | - | - |
| 0.8901 | 71000 | 1.0905 | - | - | - | - |
| 0.8963 | 71500 | 1.0856 | - | - | - | - |
| 0.9026 | 72000 | 1.0946 | 0.2775 | 0.3273 | 0.5098 | 0.3715 |
| 0.9089 | 72500 | 1.102 | - | - | - | - |
| 0.9151 | 73000 | 1.0819 | - | - | - | - |
| 0.9214 | 73500 | 1.0884 | - | - | - | - |
| 0.9277 | 74000 | 1.0888 | 0.2775 | 0.3273 | 0.5098 | 0.3715 |
| 0.9339 | 74500 | 1.0756 | - | - | - | - |
| 0.9402 | 75000 | 1.0767 | - | - | - | - |
| 0.9465 | 75500 | 1.0821 | - | - | - | - |
| 0.9527 | 76000 | 1.0891 | 0.2775 | 0.3273 | 0.5098 | 0.3715 |
| 0.9590 | 76500 | 1.0923 | - | - | - | - |
| 0.9653 | 77000 | 1.0765 | - | - | - | - |
| 0.9715 | 77500 | 1.075 | - | - | - | - |
| 0.9778 | 78000 | 1.0902 | 0.2775 | 0.3273 | 0.5098 | 0.3715 |
| 0.9841 | 78500 | 1.0833 | - | - | - | - |
| 0.9903 | 79000 | 1.0746 | - | - | - | - |
| 0.9966 | 79500 | 1.0872 | - | - | - | - |
* The bold row denotes the saved checkpoint.
</details>
### Framework Versions
- Python: 3.11.13
- Sentence Transformers: 5.0.0
- Transformers: 4.53.1
- PyTorch: 2.7.1+cu128
- Accelerate: 1.8.1
- Datasets: 4.0.0
- Tokenizers: 0.21.2
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### CachedMultipleNegativesRankingLoss
```bibtex
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |