File size: 2,261 Bytes
5dd3854 08a1af9 5dd3854 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
base_model: avichr/heBERT
tags:
- generated_from_trainer
model-index:
- name: heBERT-finetuned-samaritan
results: []
widget:
- text: "אלין שמהת בני ישראל דעלו למצרים עם [MASK] גבר וביתה עלו"
- text: "בראשית ברא [MASK] את השמים ואת הארץ"
- text: "ומשה הוה רעה ית עאן [MASK] חתנה כהן מדין ודעק ית עאנה אחרי מדברה ואתא לטור האלהים לחורב"
- text: "וחזה לה [MASK] יהוה בלהבת אש מבגו סניה וחזה ואה סניה יקיד באש וסניה ליתו מתאכל"
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# heBERT-finetuned-samaritan
This model is a fine-tuned version of [avichr/heBERT](https://huggingface.co/avichr/heBERT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 4.0412
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 4.875 | 1.0 | 118 | 4.5078 |
| 4.5415 | 2.0 | 236 | 4.4287 |
| 4.3991 | 3.0 | 354 | 4.2731 |
| 4.3072 | 4.0 | 472 | 4.2191 |
| 4.2421 | 5.0 | 590 | 4.1209 |
| 4.2013 | 6.0 | 708 | 4.0951 |
| 4.1624 | 7.0 | 826 | 4.0689 |
| 4.1062 | 8.0 | 944 | 4.0910 |
| 4.1 | 9.0 | 1062 | 4.0374 |
| 4.0738 | 10.0 | 1180 | 4.0750 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|