johko's picture
model with 1M steps
8b0e86f
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fce93877280>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fce93877310>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fce938773a0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fce93877430>",
"_build": "<function ActorCriticPolicy._build at 0x7fce938774c0>",
"forward": "<function ActorCriticPolicy.forward at 0x7fce93877550>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fce938775e0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7fce93877670>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fce93877700>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fce93877790>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fce93877820>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7fce93879100>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1652127830.031709,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVKQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjHwvaG9tZS9qb2hhbm5lcy8ubG9jYWwvc2hhcmUvdmlydHVhbGVudnMvZGVlcC1ybC1jbGFzcy1HVFE1WjN4VS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIx8L2hvbWUvam9oYW5uZXMvLmxvY2FsL3NoYXJlL3ZpcnR1YWxlbnZzL2RlZXAtcmwtY2xhc3MtR1RRNVozeFUvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrh7zy8KRg9s8YTvaIPhr6maOq8+AFlvAAAAAAAAAAAmr9DvOgn8D2oMzs+uVm4vgUIlD0SU7s7AAAAAAAAAADa0LI9z34JvGKBkLuUHY08o+dbPZD8a70AAIA/AAAAAGB9HL7bfTM/SrqSPO/Ey75cyQ6+y58RPgAAAAAAAAAAIFlrPu/h3z7IjlG+e2bAvlhmGT46qva9AAAAAAAAAADNeTE9bo3lPZY+XrwQkmS+QI8nPXKNLL0AAAAAAAAAANrbpb3KDb4/4oTpvrMvlztdhZi94JKMvgAAAAAAAAAAzdVBPpuD0rxijfM95LvGO8QUT7qO+5C9AACAPwAAgD8AkmE98rIjPr6go71cKXi+HsbivDU+bD0AAAAAAAAAAAAe1D0bhbs9bsZ6PL35e76AdHs91uICvQAAAAAAAAAAM8NwPGAibD8grAQ8q87QvnXF4zxwKXs8AAAAAAAAAAAA5GY80gKau+LgATweZpE8cDvUPNOod70AAIA/AACAP0Dg+z3Lzus9/exVvmCpTL6x0OU64qO3vAAAAAAAAAAAk6B3PjhVmT4Ik4O+EECtvtY1pT2SW4y9AAAAAAAAAAAzHNI9ATOuPV00dL5KaEy+PqnGvLoy2r0AAAAAAAAAAM3vl7wjqks9MoI4vpZwDL60Ig2+kIvTvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVThAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISwFp/4MAb0CUhpRSlIwBbJRL5owBdJRHQLEx8sEJSix1fZQoaAZoCWgPQwhsQ8U4vyBzQJSGlFKUaBVNDgFoFkdAsTH3a/RE4XV9lChoBmgJaA9DCJ/kDptIbW5AlIaUUpRoFU0BAWgWR0CxMfixFAmidX2UKGgGaAloD0MIV68io8NtckCUhpRSlGgVTRYBaBZHQLEyKtbLU1B1fZQoaAZoCWgPQwhuTbotUb5xQJSGlFKUaBVL/WgWR0CxMj8KG+K1dX2UKGgGaAloD0MI3nL1Y1M0c0CUhpRSlGgVTREBaBZHQLEyY3WnTAp1fZQoaAZoCWgPQwgk1AypIv9yQJSGlFKUaBVL/2gWR0CxMqUTpPhydX2UKGgGaAloD0MIdCmuKvuEcUCUhpRSlGgVTT4BaBZHQLEyqPdl/Yt1fZQoaAZoCWgPQwg4+S06WYlxQJSGlFKUaBVL5mgWR0CxMr5DNQj2dX2UKGgGaAloD0MIehubHelFcUCUhpRSlGgVS/5oFkdAsTLGtFKChHV9lChoBmgJaA9DCDElkujld3JAlIaUUpRoFU0HAWgWR0CxMsciW3SbdX2UKGgGaAloD0MITPp7KTzscECUhpRSlGgVS/9oFkdAsTLrH2h7FHV9lChoBmgJaA9DCI/9LJYiV3NAlIaUUpRoFU0HAWgWR0CxMu4iosI3dX2UKGgGaAloD0MID37iADrTcUCUhpRSlGgVS/poFkdAsTMBLytmtnV9lChoBmgJaA9DCFbT9URX03BAlIaUUpRoFU0OAWgWR0CxMxrLhaTwdX2UKGgGaAloD0MI7KUpAhz+b0CUhpRSlGgVTQYBaBZHQLEzTfZmI0t1fZQoaAZoCWgPQwhOY3st6CZzQJSGlFKUaBVL1mgWR0CxM1zqfOD8dX2UKGgGaAloD0MI9nzNcpm2cECUhpRSlGgVTQUBaBZHQLEzZL39JjF1fZQoaAZoCWgPQwjBqKROQFJzQJSGlFKUaBVNDQFoFkdAsTNxu0kWynV9lChoBmgJaA9DCJDXg0lxZ3FAlIaUUpRoFU0SAWgWR0CxM80y57PZdX2UKGgGaAloD0MInyCx3f1LckCUhpRSlGgVTQIBaBZHQLEz3sbNr0t1fZQoaAZoCWgPQwhs7BLV29pwQJSGlFKUaBVL+GgWR0CxNBp5qubJdX2UKGgGaAloD0MIK/pDM8/7b0CUhpRSlGgVS+RoFkdAsTQckrwvx3V9lChoBmgJaA9DCI81I4OckXBAlIaUUpRoFUvuaBZHQLE0IxsEaEV1fZQoaAZoCWgPQwiAYI4eP8FvQJSGlFKUaBVL9WgWR0CxNGU7Sy+pdX2UKGgGaAloD0MIgSVXsTh+cUCUhpRSlGgVTREBaBZHQLE0aTlDF611fZQoaAZoCWgPQwjkhXR4CJtwQJSGlFKUaBVL82gWR0CxNHo593KTdX2UKGgGaAloD0MIX7NcNrqTcECUhpRSlGgVTRwBaBZHQLE0pLb5/LF1fZQoaAZoCWgPQwjIXYQpii5yQJSGlFKUaBVN1QFoFkdAsTSosNDtxHV9lChoBmgJaA9DCL6ECg4vonBAlIaUUpRoFU0KAWgWR0CxNLlenhsJdX2UKGgGaAloD0MICcIVUKiccUCUhpRSlGgVS+5oFkdAsTTDIQvpQnV9lChoBmgJaA9DCD18mSgCKXJAlIaUUpRoFUvpaBZHQLE0yTBZZB91fZQoaAZoCWgPQwjuIeF7f71RQJSGlFKUaBVLomgWR0CxNM6yfL9udX2UKGgGaAloD0MI2c9iKZI9c0CUhpRSlGgVS/1oFkdAsTT1VT72tnV9lChoBmgJaA9DCF2kUBY+e3BAlIaUUpRoFU0LAWgWR0CxNPtoSL62dX2UKGgGaAloD0MIjDBFuXSicUCUhpRSlGgVTQgBaBZHQLE6EyJsO5J1fZQoaAZoCWgPQwjAsWfPpY1xQJSGlFKUaBVL/mgWR0CxOj0PQOWjdX2UKGgGaAloD0MI4pANpMsTcUCUhpRSlGgVTQgBaBZHQLE6SvnbItF1fZQoaAZoCWgPQwhlyLH1DIFvQJSGlFKUaBVL9GgWR0CxOm/7N0NjdX2UKGgGaAloD0MISFLSwxAwckCUhpRSlGgVS/BoFkdAsTp9yLhrFnV9lChoBmgJaA9DCBPWxtgJO3JAlIaUUpRoFUv9aBZHQLE6gRAbADd1fZQoaAZoCWgPQwiAKQMHtOQyQJSGlFKUaBVL22gWR0CxOrPoNd7fdX2UKGgGaAloD0MIMSWS6KUkcUCUhpRSlGgVTUwBaBZHQLE6uNn5BTp1fZQoaAZoCWgPQwh2/1iIjmdyQJSGlFKUaBVNAAFoFkdAsTq+HxjJ+3V9lChoBmgJaA9DCKc+kLzzIHRAlIaUUpRoFUvuaBZHQLE6wp9JBgN1fZQoaAZoCWgPQwgsu2BwDVxzQJSGlFKUaBVNAwFoFkdAsTrF5zHS4XV9lChoBmgJaA9DCAmocASp63JAlIaUUpRoFU0AAWgWR0CxOtArDqGDdX2UKGgGaAloD0MI0sWmlUJoc0CUhpRSlGgVS/loFkdAsTrVufmLcnV9lChoBmgJaA9DCEBQbtv3eHNAlIaUUpRoFU0GAWgWR0CxOxOmFajfdX2UKGgGaAloD0MIujDSixpecECUhpRSlGgVTRYBaBZHQLE7IgP3BYV1fZQoaAZoCWgPQwiwBFJi17FvQJSGlFKUaBVNyQJoFkdAsTtVQizLOnV9lChoBmgJaA9DCKcHBaVov3JAlIaUUpRoFU0iAWgWR0CxO6fzSThYdX2UKGgGaAloD0MIkjtsIjP4b0CUhpRSlGgVTQwBaBZHQLE7r/2TPjZ1fZQoaAZoCWgPQwhJgQUwJSlxQJSGlFKUaBVL8GgWR0CxO7f6KtPpdX2UKGgGaAloD0MIHebLC/CAcUCUhpRSlGgVTQ4BaBZHQLE7wK6nR9h1fZQoaAZoCWgPQwgd5PVg0pBvQJSGlFKUaBVL9mgWR0CxO9H6hxo7dX2UKGgGaAloD0MIH7x2acONcUCUhpRSlGgVS+toFkdAsTv1NBWxQnV9lChoBmgJaA9DCDLjbaWXjXJAlIaUUpRoFUvyaBZHQLE8BNxlxwR1fZQoaAZoCWgPQwirQZjbvepwQJSGlFKUaBVNIAFoFkdAsTwOhK15SnV9lChoBmgJaA9DCHVz8bf9sXBAlIaUUpRoFU0AAWgWR0CxPCXfVI7OdX2UKGgGaAloD0MIQ3Iyceu0ckCUhpRSlGgVTQQBaBZHQLE8J2KEWZZ1fZQoaAZoCWgPQwirlQm/FM5wQJSGlFKUaBVNBAFoFkdAsTwvJtBOYnV9lChoBmgJaA9DCHU8ZqByYHJAlIaUUpRoFU0EAWgWR0CxPDsU21lYdX2UKGgGaAloD0MInuxmRn+ecUCUhpRSlGgVTQYBaBZHQLE8Q7v5P/J1fZQoaAZoCWgPQwiHxD2WvktyQJSGlFKUaBVL8WgWR0CxPGfI4lyBdX2UKGgGaAloD0MICi/BqQ8Oc0CUhpRSlGgVS/xoFkdAsTyDbSJCSnV9lChoBmgJaA9DCNAoXfpXdXNAlIaUUpRoFU0IAWgWR0CxPMgf6oETdX2UKGgGaAloD0MInP2BcltPc0CUhpRSlGgVS9doFkdAsTzp1W8yvnV9lChoBmgJaA9DCCpz843orG1AlIaUUpRoFUv3aBZHQLE9EzF+/g11fZQoaAZoCWgPQwhF2safqKtvQJSGlFKUaBVNBAFoFkdAsT0XpNbkfnV9lChoBmgJaA9DCFx2iH+YbHJAlIaUUpRoFUv3aBZHQLE9LfapPyl1fZQoaAZoCWgPQwiO6nQg68tyQJSGlFKUaBVNFAFoFkdAsT04G0NSZXV9lChoBmgJaA9DCPJCOjyEpHBAlIaUUpRoFUvhaBZHQLE9P23azu51fZQoaAZoCWgPQwgv/OB86opyQJSGlFKUaBVL3mgWR0CxPUSaVlf7dX2UKGgGaAloD0MIxhUXR2VtcUCUhpRSlGgVS+loFkdAsT1n/dZaFHV9lChoBmgJaA9DCNffEoA/A3NAlIaUUpRoFUvqaBZHQLE9asTFl051fZQoaAZoCWgPQwgo1xTILDVzQJSGlFKUaBVL4GgWR0CxPXBkupS8dX2UKGgGaAloD0MI+glnt1byckCUhpRSlGgVS/doFkdAsT2DWvr4WXV9lChoBmgJaA9DCOf/VUdO1nJAlIaUUpRoFUvvaBZHQLE9jHSF49p1fZQoaAZoCWgPQwgeb/JbdDY/QJSGlFKUaBVL12gWR0CxPZTuBtk4dX2UKGgGaAloD0MI09ufi4Z7cECUhpRSlGgVS91oFkdAsT211dPcjHV9lChoBmgJaA9DCDi+9sySlm5AlIaUUpRoFU1TAWgWR0CxPcSsXBP9dX2UKGgGaAloD0MIb2WJzvKVcUCUhpRSlGgVTQsBaBZHQLE+O5u63Ap1fZQoaAZoCWgPQwhw0jQo2iBxQJSGlFKUaBVL3mgWR0CxPkJJbt7bdX2UKGgGaAloD0MIOZojK7/nckCUhpRSlGgVTQIBaBZHQLE+UhAWznl1fZQoaAZoCWgPQwjNPSR8LypxQJSGlFKUaBVL/WgWR0CxPp0Gmk30dX2UKGgGaAloD0MI7pV5q641cUCUhpRSlGgVTQcBaBZHQLE+o1h9b5d1fZQoaAZoCWgPQwikiuJVVqxvQJSGlFKUaBVNBQFoFkdAsT60eEIw/XV9lChoBmgJaA9DCLBXWHC/e25AlIaUUpRoFU0iAWgWR0CxPrmwmmcfdX2UKGgGaAloD0MIN6lorH1qbUCUhpRSlGgVTQcBaBZHQLE+vdj5Kvp1fZQoaAZoCWgPQwi7JqQ1xgZxQJSGlFKUaBVL9GgWR0CxPshA0KqodX2UKGgGaAloD0MIhLpIoexzckCUhpRSlGgVS9toFkdAsT7MSxqwhXV9lChoBmgJaA9DCOOItfiUOG5AlIaUUpRoFUv3aBZHQLE+1NG3F1l1fZQoaAZoCWgPQwgJwD+lCgRyQJSGlFKUaBVL72gWR0CxPtyeiBXkdX2UKGgGaAloD0MIW0OpvQjDcUCUhpRSlGgVTQUBaBZHQLE+4AT7EYR1fZQoaAZoCWgPQwghQIaOnfpyQJSGlFKUaBVL5GgWR0CxPv/2oNutdX2UKGgGaAloD0MINj0oKEUqVkCUhpRSlGgVS5NoFkdAsT8k+iaiK3V9lChoBmgJaA9DCETDYtT1rHNAlIaUUpRoFU0CAWgWR0CxPzK2OQyRdX2UKGgGaAloD0MIg8KgTGO7cUCUhpRSlGgVTTgBaBZHQLE/QgTh5xB1fZQoaAZoCWgPQwiasz7lWE5yQJSGlFKUaBVL5mgWR0CxP3mvGIbgdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 372,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVKQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjHwvaG9tZS9qb2hhbm5lcy8ubG9jYWwvc2hhcmUvdmlydHVhbGVudnMvZGVlcC1ybC1jbGFzcy1HVFE1WjN4VS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIx8L2hvbWUvam9oYW5uZXMvLmxvY2FsL3NoYXJlL3ZpcnR1YWxlbnZzL2RlZXAtcmwtY2xhc3MtR1RRNVozeFUvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}