--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: image-classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.58125 --- # image-classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2066 - Accuracy: 0.5813 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0741 | 1.0 | 20 | 2.0298 | 0.2687 | | 1.9068 | 2.0 | 40 | 1.7590 | 0.425 | | 1.6486 | 3.0 | 60 | 1.5578 | 0.4688 | | 1.4978 | 4.0 | 80 | 1.4362 | 0.5375 | | 1.3643 | 5.0 | 100 | 1.3577 | 0.5312 | | 1.2724 | 6.0 | 120 | 1.3503 | 0.5437 | | 1.1678 | 7.0 | 140 | 1.2626 | 0.575 | | 1.074 | 8.0 | 160 | 1.2404 | 0.5813 | | 1.0216 | 9.0 | 180 | 1.2679 | 0.5375 | | 0.943 | 10.0 | 200 | 1.1997 | 0.6 | | 0.9146 | 11.0 | 220 | 1.1864 | 0.5938 | | 0.8716 | 12.0 | 240 | 1.2533 | 0.5437 | | 0.8739 | 13.0 | 260 | 1.1740 | 0.5625 | | 0.8903 | 14.0 | 280 | 1.2089 | 0.55 | | 0.8424 | 15.0 | 300 | 1.2022 | 0.5625 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1