File size: 2,645 Bytes
a9ced92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
library_name: transformers
license: mit
base_model: w11wo/indonesian-roberta-base-sentiment-classifier
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: results
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# results

This model is a fine-tuned version of [w11wo/indonesian-roberta-base-sentiment-classifier](https://huggingface.co/w11wo/indonesian-roberta-base-sentiment-classifier) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3554
- Accuracy: 0.8927
- F1 Macro: 0.8928
- F1 Weighted: 0.8928
- Precision Macro: 0.8930
- Recall Macro: 0.8927
- Precision Weighted: 0.8931
- Recall Weighted: 0.8927

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | F1 Macro | F1 Weighted | Precision Macro | Recall Macro | Precision Weighted | Recall Weighted |
|:-------------:|:------:|:----:|:---------------:|:--------:|:--------:|:-----------:|:---------------:|:------------:|:------------------:|:---------------:|
| 0.3359        | 1.8182 | 500  | 0.3600          | 0.8891   | 0.8890   | 0.8890      | 0.8890          | 0.8890       | 0.8891             | 0.8891          |
| 0.3117        | 3.6364 | 1000 | 0.3554          | 0.8927   | 0.8928   | 0.8928      | 0.8930          | 0.8927       | 0.8931             | 0.8927          |
| 0.2603        | 5.4545 | 1500 | 0.3692          | 0.8891   | 0.8892   | 0.8892      | 0.8894          | 0.8891       | 0.8895             | 0.8891          |
| 0.2902        | 7.2727 | 2000 | 0.3660          | 0.8873   | 0.8874   | 0.8875      | 0.8878          | 0.8872       | 0.8879             | 0.8873          |
| 0.301         | 9.0909 | 2500 | 0.3668          | 0.8855   | 0.8855   | 0.8856      | 0.8857          | 0.8854       | 0.8858             | 0.8855          |


### Framework versions

- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.1