BrokenCircuits / Brokencircuits.py
joebruce1313's picture
Upload 2 files
fda421b verified
import tensorflow as tf
import numpy as np
import faiss
class MultiModalTransformer(tf.keras.Model):
def __init__(self, hparams, knowledge_base, n_hash=1024, n_quant=256):
super(MultiModalTransformer, self).__init__()
self.hparams = hparams
self.n_hash = n_hash
self.n_quant = n_quant
# Core Transformer components
self.wte = tf.keras.layers.Embedding(hparams.n_vocab, hparams.n_embd)
self.wpe = tf.keras.layers.Embedding(hparams.n_ctx, hparams.n_embd)
self.hash_layer = tf.keras.layers.Dense(n_hash, activation='relu')
self.quant_layer = tf.keras.layers.Dense(n_quant, activation='relu')
self.h = [TransformerBlock(hparams.n_embd, hparams.n_head) for _ in range(hparams.n_layer)]
self.ln_f = tf.keras.layers.LayerNormalization(epsilon=1e-5)
self.fc = tf.keras.layers.Dense(hparams.n_vocab, use_bias=False)
# Speech Recognition
self.audio_encoder = tf.keras.Sequential([
tf.keras.layers.Conv1D(256, kernel_size=11, strides=2, padding='same', activation='relu'),
tf.keras.layers.Conv1D(256, kernel_size=11, strides=2, padding='same', activation='relu'),
tf.keras.layers.Conv1D(256, kernel_size=11, strides=2, padding='same', activation='relu'),
tf.keras.layers.GlobalAveragePooling1D(),
tf.keras.layers.Dense(hparams.n_embd)
])
# Image Captioning
self.image_encoder = tf.keras.applications.ResNet50(include_top=False, weights='imagenet')
self.image_proj = tf.keras.layers.Dense(hparams.n_embd)
# Music Generation
self.pitch_embedding = tf.keras.layers.Embedding(128, hparams.n_embd)
self.duration_embedding = tf.keras.layers.Embedding(32, hparams.n_embd)
self.velocity_embedding = tf.keras.layers.Embedding(128, hparams.n_embd)
# Anomaly Detection
self.anomaly_threshold = tf.Variable(0.5, trainable=False)
# RAG
self.knowledge_base = knowledge_base
self.retriever = FAISSRetriever(knowledge_base)
self.query_encoder = tf.keras.Sequential([
tf.keras.layers.Dense(hparams.n_embd, activation='relu'),
tf.keras.layers.Dense(hparams.n_embd)
])
# Task-specific output layers
self.speech_output = tf.keras.layers.Dense(hparams.n_vocab)
self.caption_output = tf.keras.layers.Dense(hparams.n_vocab)
self.music_output = tf.keras.layers.Dense(288) # 128 (pitch) + 32 (duration) + 128 (velocity)
self.anomaly_output = tf.keras.layers.Dense(1, activation='sigmoid')
# Conversation history
self.conversation_history = []
# Personality traits
self.personality_traits = {
'kindness': 0.9,
'honesty': 0.9,
'resilience': 0.8,
'open_mindedness': 0.8,
'empathy': 0.9,
'reliability': 0.9,
'humility': 0.8,
'positivity': 0.9,
'courage': 0.8,
'curiosity': 0.9,
'humor': 0.8,
'self_discipline': 0.8,
'emotional_stability': 0.8,
'assertiveness': 0.8,
'creativity': 0.9
}
def call(self, inputs, task):
if task == 'speech_recognition':
x = self.audio_encoder(inputs)
elif task == 'image_captioning':
image, text = inputs
image_features = self.image_encoder(image)
image_features = self.image_proj(tf.keras.layers.GlobalAveragePooling2D()(image_features))
x = tf.concat([image_features[:, tf.newaxis, :], self.wte(text)], axis=1)
elif task == 'music_generation':
pitch, duration, velocity = inputs
x = self.pitch_embedding(pitch) + self.duration_embedding(duration) + self.velocity_embedding(velocity)
elif task in ['text_generation', 'anomaly_detection']:
x = self.wte(inputs)
else:
raise ValueError(f"Unknown task: {task}")
# RAG for text-based tasks
if task in ['text_generation', 'image_captioning']:
query = x[:, 0, :] # Use first token as query
encoded_query = self.query_encoder(query)
retrieved_docs = self.retriever.retrieve(encoded_query)
x = tf.concat([x, self.wte(retrieved_docs)], axis=1)
# Add positional embeddings
position = tf.range(0, x.shape[1], dtype=tf.int32)[tf.newaxis, :]
x = x + self.wpe(position)
# Apply core Transformer layers
x = self.hash_layer(x)
x = self.quant_layer(x)
for layer in self.h:
x, _ = layer(x)
x = self.ln_f(x)
# Task-specific outputs
if task == 'speech_recognition':
return self.speech_output(x)
elif task == 'image_captioning':
return self.caption_output(x)
elif task == 'music_generation':
return self.music_output(x)
elif task == 'anomaly_detection':
reconstruction = self.fc(x)
reconstruction_loss = tf.reduce_mean(tf.square(inputs - reconstruction), axis=-1)
anomaly_scores = tf.where(reconstruction_loss > self.anomaly_threshold, 1.0, 0.0)
return reconstruction, anomaly_scores
else: # text_generation
return self.fc(x)
def pipe(self, inputs, task):
if task == 'speech_recognition':
return self.call(inputs, task)
elif task == 'image_captioning':
return self.call(inputs, task)
elif task == 'music_generation':
return self.call(inputs, task)
elif task == 'text_generation':
return self.call(inputs, task)
elif task == 'anomaly_detection':
return self.call(inputs, task)
else:
raise ValueError(f"Unknown task: {task}")
def conversation(self, user_input):
# Add user input to conversation history
self.conversation_history.append(user_input)
# Generate response based on conversation history and personality traits
response = self.generate_response(self.conversation_history)
# Add response to conversation history
self.conversation_history.append(response)
return response
def generate_response(self, conversation_history):
# Concatenate conversation history into a single input
conversation_input = tf.concat(conversation_history, axis=0)
# Generate response using the model
response = self.pipe(conversation_input, task='text_generation')
# Apply personality traits to the response
response = self.apply_personality_traits(response)
return response
def apply_personality_traits(self, response):
# Apply personality traits to the response
for trait, value in self.personality_traits.items():
if trait == 'kindness':
response = self.add_kindness(response, value)
elif trait == 'honesty':
response = self.add_honesty(response, value)
elif trait == 'resilience':
response = self.add_resilience(response, value)
elif trait == 'open_mindedness':
response = self.add_open_mindedness(response, value)
elif trait == 'empathy':
response = self.add_empathy(response, value)
elif trait == 'reliability':
response = self.add_reliability(response, value)
elif trait == 'humility':
response = self.add_humility(response, value)
elif trait == 'positivity':
response = self.add_positivity(response, value)
elif trait == 'courage':
response = self.add_courage(response, value)
elif trait == 'curiosity':
response = self.add_curiosity(response, value)
elif trait == 'humor':
response = self.add_humor(response, value)
elif trait == 'self_discipline':
response = self.add_self_discipline(response, value)
elif trait == 'emotional_stability':
response = self.add_emotional_stability(response, value)
elif trait == 'assertiveness':
response = self.add_assertiveness(response, value)
elif trait == 'creativity':
response = self.add_creativity(response, value)
return response
def add_kindness(self, response, value):
# Add kindness to the response
if value > 0.5:
response = f"I understand your concern. {response}"
return response
def add_honesty(self, response, value):
# Add honesty to the response
if value > 0.5:
response = f"To be honest, {response}"
return response
def add_resilience(self, response, value):
# Add resilience to the response
if value > 0.5:
response = f"Let's keep trying. {response}"
return response
def add_open_mindedness(self, response, value):
# Add open-mindedness to the response
if value > 0.5:
response = f"That's an interesting perspective. {response}"
return response
def add_empathy(self, response, value):
# Add empathy to the response
if value > 0.5:
response = f"I can see how you feel. {response}"
return response
def add_reliability(self, response, value):
# Add reliability to the response
if value > 0.5:
response = f"You can count on me. {response}"
return response
def add_humility(self, response, value):
# Add humility to the response
if value > 0.5:
response = f"I'm still learning. {response}"
return response
def add_positivity(self, response, value):
# Add positivity to the response
if value > 0.5:
response = f"Let's stay positive. {response}"
return response
def add_courage(self, response, value):
# Add courage to the response
if value > 0.5:
response = f"Let's face this together. {response}"
return response
def add_curiosity(self, response, value):
# Add curiosity to the response
if value > 0.5:
response = f"That's fascinating. {response}"
return response
def add_humor(self, response, value):
# Add humor to the response
if value > 0.5:
response = f"On a lighter note, {response}"
return response
def add_self_discipline(self, response, value):
# Add self-discipline to the response
if value > 0.5:
response = f"Let's stay focused. {response}"
return response
def add_emotional_stability(self, response, value):
# Add emotional stability to the response
if value > 0.5:
response = f"Let's stay calm. {response}"
return response
def add_assertiveness(self, response, value):
# Add assertiveness to the response
if value > 0.5:
response = f"I firmly believe that {response}"
return response
def add_creativity(self, response, value):
# Add creativity to the response
if value > 0.5:
response = f"Let's think outside the box. {response}"
return response
def fine_tune_personality(self, trait, value):
# Fine-tune the personality trait
if trait in self.personality_traits:
self.personality_traits[trait] = value
else:
raise ValueError(f"Unknown trait: {trait}")
def safe_word_format(self, user_input):
# Safe word format for user control
if user_input.lower() == "stop":
self.conversation_history = []
return "Conversation stopped. You can start a new conversation."
elif user_input.lower() == "reset":
self.conversation_history = []
return "Conversation reset. Let's start fresh."
else:
return None
class TransformerBlock(tf.keras.layers.Layer):
def __init__(self, n_embd, n_head):
super(TransformerBlock, self).__init__()
self.attn = MultiHeadAttention(n_embd, n_head)
self.ln_1 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
self.mlp = tf.keras.Sequential([
tf.keras.layers.Dense(4 * n_embd, activation=gelu),
tf.keras.layers.Dense(n_embd)
])
self.ln_2 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
def call(self, x, past=None):
a, present = self.attn(self.ln_1(x), past=past)
x = x + a
m = self.mlp(self.ln_2(x))
x = x + m
return x, present
class MultiHeadAttention(tf.keras.layers.Layer):
def __init__(self, n_embd, n_head):
super(MultiHeadAttention, self).__init__()
self.n_embd = n_embd
self.n_head = n_head
self.c_attn = tf.keras.layers.Dense(3 * n_embd)
self.c_proj = tf.keras.layers.Dense(n_embd)
def split_heads(self, x):
return tf.transpose(tf.reshape(x, (*x.shape[:-1], self.n_head, -1)), [0, 2, 1, 3])
def merge_heads(self, x):
return tf.reshape(tf.transpose(x, [0, 2, 1, 3]), (*x.shape[:-3], -1))
def call(self, x, past=None):
c = self.c_attn(x)
q, k, v = tf.split(c, 3, axis=-1)
q, k, v = map(self.split_heads, [q, k, v])
if past is not None:
pk, pv = past
k = tf.concat([pk, k], axis=-2)
v = tf.concat([pv, v], axis=-2)
present = tf.stack([k, v], axis=1)
a = tf.matmul(q, k, transpose_b=True) / tf.math.sqrt(tf.cast(v.shape[-1], tf.float32))
a = tf.nn.softmax(a)
a = tf.matmul(a, v)
a = self.merge_heads(a)
a = self.c_proj(a)
return a, present
class FAISSRetriever:
def __init__(self, knowledge_base, dim=768, num_results=5):
self.index = faiss.IndexFlatL2(dim)
self.knowledge_base = knowledge_base
self.num_results = num_results
vectors = [doc['vector'] for doc in knowledge_base]
self.index.add(np.array(vectors))
def retrieve(self, query_vector):
distances, indices = self.index.search(query_vector.numpy(), self.num_results)
retrieved_docs = [self.knowledge_base[i]['text'] for i in indices[0]]
return tf.constant(retrieved_docs)
def gelu(x):
return 0.5 * x * (1 + tf.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3))))
# Custom loss function
def custom_loss(y_true, y_pred, model, task):
if task == 'anomaly_detection':
mse = tf.keras.losses.MeanSquaredError()
return mse(y_true, y_pred)
else:
ce_loss = tf.keras.losses.sparse_categorical_crossentropy(y_true, y_pred, from_logits=True)
reg_loss = tf.reduce_sum([tf.nn.l2_loss(w) for w in model.trainable_weights])
return ce_loss + 0.01 * reg_loss
# Training function
@tf.function
def train_step(model, optimizer, inputs, targets, task):
with tf.GradientTape() as tape:
predictions = model(inputs, task)
loss = custom_loss(targets, predictions, model, task)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
return loss
# Hyperparameters
class HParams:
def __init__(self, n_vocab, n_ctx, n_embd, n_head, n_layer):
self.n_vocab = n_vocab
self.n_ctx = n_ctx
self.n_embd = n_embd
self.n_head = n_head
self.n_layer = n_layer
hparams = HParams(
n_vocab=50000,
n_ctx=1024,
n_embd=768,
n_head=12,
n_layer=12
)
# Initialize knowledge base (for demonstration)
knowledge_base = [
{'text': 'Example knowledge 1', 'vector': np.random.rand(768)},
{'text': 'Example knowledge 2', 'vector': np.random.rand(768)},
# ... more entries ...
]
# Initialize model
model = MultiModalTransformer(hparams, knowledge_base)
# Initialize optimizer
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-4)
# Training loop (pseudo-code)
num_epochs = 10
for epoch in range(num_epochs):
for batch in dataset:
inputs, targets, task = batch
loss = train_step(model, optimizer, inputs, targets, task)
print(f"Epoch {epoch + 1}, Loss: {loss.numpy()}")
# Example usage
speech_input = tf.random.normal((1, 16000, 1)) # 1 second of audio at 16kHz
speech_output = model(speech_input, task='speech_recognition')
image_input = tf.random.normal((1, 224, 224, 3))
text_input = tf.random.uniform((1, 10), maxval=50000, dtype=tf.int32)
caption_output = model([image_input, text_input], task='image_captioning')
music_input = [
tf.random.uniform((1, 100), maxval=128, dtype=tf.int32), # pitch
tf.random.uniform((1, 100), maxval=32, dtype=tf.int32), # duration
tf.random.uniform((1, 100), maxval=128, dtype=tf.int32) # velocity
]
music_output = model(music_input, task='music_generation')
text_input = tf.random.uniform((1, 50), maxval=50000, dtype=tf.int32)
text_output = model(text_input, task='text_generation')
anomaly_input = tf.random.normal((1, 100, 768))
reconstructed, anomalies = model(anomaly_input, task='anomaly_detection')
# Example conversation
user_input = "Hello, how are you?"
response = model.conversation(user_input)
print(response)
# Fine-tune personality trait
model.fine_tune_personality('kindness', 0.95)
# Safe word control
user_input = "stop"
response = model.safe_word_format(user_input)
print(response)