Add new SentenceTransformer model
Browse files- 0_MMContextEncoder/config.json +16 -0
- 0_MMContextEncoder/model.safetensors +3 -0
- README.md +504 -0
- config_sentence_transformers.json +14 -0
- modules.json +8 -0
0_MMContextEncoder/config.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"text_encoder_name": "NeuML/pubmedbert-base-embeddings",
|
3 |
+
"adapter_hidden_dim": 512,
|
4 |
+
"adapter_output_dim": 1024,
|
5 |
+
"freeze_text_encoder": true,
|
6 |
+
"unfreeze_last_n_layers": 0,
|
7 |
+
"registered_data_origin": "unregistered",
|
8 |
+
"registered_input_dim": null,
|
9 |
+
"output_token_embeddings": false,
|
10 |
+
"train_lookup": false,
|
11 |
+
"pooling_mode": "mean",
|
12 |
+
"joint_adapter_hidden_dim": null,
|
13 |
+
"_joint_adapter_was_trained": false,
|
14 |
+
"max_seq_length": 512,
|
15 |
+
"text_model_kwargs": {}
|
16 |
+
}
|
0_MMContextEncoder/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63acb083c62bf243c3bbd39d1aba7320c64bbe3e4b14acac01d4b58bb0045f0d
|
3 |
+
size 441647280
|
README.md
ADDED
@@ -0,0 +1,504 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- code
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
- dense
|
9 |
+
- generated_from_trainer
|
10 |
+
- dataset_size:81143
|
11 |
+
- loss:MultipleNegativesRankingLoss
|
12 |
+
base_model: NeuML/pubmedbert-base-embeddings
|
13 |
+
widget:
|
14 |
+
- source_sentence: sample_idx:census_d7d7e89c-c93a-422d-8958-9b4a90b69558_1563
|
15 |
+
sentences:
|
16 |
+
- This measurement was conducted with 10x 5' v1. Naive B cell from blood of a 26-year
|
17 |
+
old male, activated with CD3.
|
18 |
+
- sample_idx:census_d7d7e89c-c93a-422d-8958-9b4a90b69558_5036
|
19 |
+
- This measurement was conducted with 10x 5' v1. A 26-year-old male individual's
|
20 |
+
blood sample, containing naive thymus-derived CD4-positive, alpha-beta T cells,
|
21 |
+
with no activation or treatment, and in G1 phase.
|
22 |
+
- source_sentence: sample_idx:census_cf83c98a-3791-4537-bbde-a719f6d73c13_738
|
23 |
+
sentences:
|
24 |
+
- This measurement was conducted with 10x 3' v3. Blasts cells derived from the blood
|
25 |
+
of a 4-month old male.
|
26 |
+
- sample_idx:census_cf83c98a-3791-4537-bbde-a719f6d73c13_1016
|
27 |
+
- This measurement was conducted with 10x 3' v3. This is a megakaryocyte-erythroid
|
28 |
+
progenitor cell (MEP-like) derived from a 1-month-old female patient with KMT2A-rearranged
|
29 |
+
(KMT2A-r) infant acute lymphoblastic leukemia (ALL). The cell exhibits increased
|
30 |
+
lineage plasticity, downregulated steroid response pathways, and belongs to a
|
31 |
+
hematopoietic stem and progenitor-like (HSPC-like) population that forms an immunosuppressive
|
32 |
+
signaling circuit with cytotoxic lymphocytes.
|
33 |
+
- source_sentence: sample_idx:census_2872f4b0-b171-46e2-abc6-befcf6de6306_2050
|
34 |
+
sentences:
|
35 |
+
- sample_idx:census_2872f4b0-b171-46e2-abc6-befcf6de6306_1719
|
36 |
+
- This measurement was conducted with 10x 5' v2. Memory B cell derived from a 65-79
|
37 |
+
year-old male, taken from the mesenteric lymph node.
|
38 |
+
- This measurement was conducted with 10x 5' v2. IgA plasma cell sample taken from
|
39 |
+
the mesenteric lymph node of a 65-79 year-old female.
|
40 |
+
- source_sentence: sample_idx:census_3f31f8ce-bbf6-4df8-8203-aa240ed03026_299
|
41 |
+
sentences:
|
42 |
+
- This measurement was conducted with 10x 3' v3. Neuron cell type from a 50-year-old
|
43 |
+
male human cerebral cortex, specifically from the Cingulate gyrus, rostral (CgGr),
|
44 |
+
Ventral division of MFC - A24 region, with European self-reported ethnicity, analyzed
|
45 |
+
at the nucleus level.
|
46 |
+
- This measurement was conducted with 10x 3' v3. Neuron cell type from a 50-year-old
|
47 |
+
male human cerebral cortex, specifically the rostral cingulate gyrus, ventral
|
48 |
+
division of MFC, A24, with European ethnicity.
|
49 |
+
- sample_idx:census_3f31f8ce-bbf6-4df8-8203-aa240ed03026_30
|
50 |
+
- source_sentence: sample_idx:census_1b9d8702-5af8-4142-85ed-020eb06ec4f6_14644
|
51 |
+
sentences:
|
52 |
+
- sample_idx:census_1b9d8702-5af8-4142-85ed-020eb06ec4f6_16130
|
53 |
+
- This measurement was conducted with 10x 3' v3. Classical monocytes derived from
|
54 |
+
the blood of a female individual in her seventies.
|
55 |
+
- This measurement was conducted with 10x 5' v2. Sample is a CD8-positive, alpha-beta
|
56 |
+
memory T cell, specifically a cytotoxic T cell, from the lamina propria tissue
|
57 |
+
of an individual in her eighth decade of life.
|
58 |
+
datasets:
|
59 |
+
- jo-mengr/cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation
|
60 |
+
pipeline_tag: sentence-similarity
|
61 |
+
library_name: sentence-transformers
|
62 |
+
metrics:
|
63 |
+
- cosine_accuracy
|
64 |
+
model-index:
|
65 |
+
- name: SentenceTransformer based on NeuML/pubmedbert-base-embeddings
|
66 |
+
results:
|
67 |
+
- task:
|
68 |
+
type: triplet
|
69 |
+
name: Triplet
|
70 |
+
dataset:
|
71 |
+
name: cellxgene pseudo bulk 100k multiplets natural language annotation cell
|
72 |
+
sentence 1
|
73 |
+
type: cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation_cell_sentence_1
|
74 |
+
metrics:
|
75 |
+
- type: cosine_accuracy
|
76 |
+
value: 0.5158140063285828
|
77 |
+
name: Cosine Accuracy
|
78 |
+
---
|
79 |
+
|
80 |
+
# SentenceTransformer based on NeuML/pubmedbert-base-embeddings
|
81 |
+
|
82 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [NeuML/pubmedbert-base-embeddings](https://huggingface.co/NeuML/pubmedbert-base-embeddings) on the [cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation](https://huggingface.co/datasets/jo-mengr/cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
83 |
+
|
84 |
+
## Model Details
|
85 |
+
|
86 |
+
### Model Description
|
87 |
+
- **Model Type:** Sentence Transformer
|
88 |
+
- **Base model:** [NeuML/pubmedbert-base-embeddings](https://huggingface.co/NeuML/pubmedbert-base-embeddings) <!-- at revision d6eaca8254bc229f3ca42749a5510ae287eb3486 -->
|
89 |
+
- **Maximum Sequence Length:** 512 tokens
|
90 |
+
- **Output Dimensionality:** 1024 dimensions
|
91 |
+
- **Similarity Function:** Cosine Similarity
|
92 |
+
- **Training Dataset:**
|
93 |
+
- [cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation](https://huggingface.co/datasets/jo-mengr/cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation)
|
94 |
+
- **Language:** code
|
95 |
+
<!-- - **License:** Unknown -->
|
96 |
+
|
97 |
+
### Model Sources
|
98 |
+
|
99 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
100 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
101 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
102 |
+
|
103 |
+
### Full Model Architecture
|
104 |
+
|
105 |
+
```
|
106 |
+
SentenceTransformer(
|
107 |
+
(0): MMContextEncoder(
|
108 |
+
(text_encoder): BertModel(
|
109 |
+
(embeddings): BertEmbeddings(
|
110 |
+
(word_embeddings): Embedding(30522, 768, padding_idx=0)
|
111 |
+
(position_embeddings): Embedding(512, 768)
|
112 |
+
(token_type_embeddings): Embedding(2, 768)
|
113 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
114 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
115 |
+
)
|
116 |
+
(encoder): BertEncoder(
|
117 |
+
(layer): ModuleList(
|
118 |
+
(0-11): 12 x BertLayer(
|
119 |
+
(attention): BertAttention(
|
120 |
+
(self): BertSdpaSelfAttention(
|
121 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
122 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
123 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
124 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
125 |
+
)
|
126 |
+
(output): BertSelfOutput(
|
127 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
128 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
129 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
130 |
+
)
|
131 |
+
)
|
132 |
+
(intermediate): BertIntermediate(
|
133 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
134 |
+
(intermediate_act_fn): GELUActivation()
|
135 |
+
)
|
136 |
+
(output): BertOutput(
|
137 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
138 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
139 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
140 |
+
)
|
141 |
+
)
|
142 |
+
)
|
143 |
+
)
|
144 |
+
(pooler): BertPooler(
|
145 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
146 |
+
(activation): Tanh()
|
147 |
+
)
|
148 |
+
)
|
149 |
+
(text_adapter): AdapterModule(
|
150 |
+
(net): Sequential(
|
151 |
+
(0): Linear(in_features=768, out_features=512, bias=True)
|
152 |
+
(1): ReLU(inplace=True)
|
153 |
+
(2): Linear(in_features=512, out_features=1024, bias=True)
|
154 |
+
(3): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
155 |
+
)
|
156 |
+
)
|
157 |
+
(pooling): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
158 |
+
)
|
159 |
+
)
|
160 |
+
```
|
161 |
+
|
162 |
+
## Usage
|
163 |
+
|
164 |
+
### Direct Usage (Sentence Transformers)
|
165 |
+
|
166 |
+
First install the Sentence Transformers library:
|
167 |
+
|
168 |
+
```bash
|
169 |
+
pip install -U sentence-transformers
|
170 |
+
```
|
171 |
+
|
172 |
+
Then you can load this model and run inference.
|
173 |
+
```python
|
174 |
+
from sentence_transformers import SentenceTransformer
|
175 |
+
|
176 |
+
# Download from the 🤗 Hub
|
177 |
+
model = SentenceTransformer("jo-mengr/mmcontext-pubmedbert-100k")
|
178 |
+
# Run inference
|
179 |
+
sentences = [
|
180 |
+
'sample_idx:census_1b9d8702-5af8-4142-85ed-020eb06ec4f6_14644',
|
181 |
+
"This measurement was conducted with 10x 5' v2. Sample is a CD8-positive, alpha-beta memory T cell, specifically a cytotoxic T cell, from the lamina propria tissue of an individual in her eighth decade of life.",
|
182 |
+
"This measurement was conducted with 10x 3' v3. Classical monocytes derived from the blood of a female individual in her seventies.",
|
183 |
+
]
|
184 |
+
embeddings = model.encode(sentences)
|
185 |
+
print(embeddings.shape)
|
186 |
+
# [3, 1024]
|
187 |
+
|
188 |
+
# Get the similarity scores for the embeddings
|
189 |
+
similarities = model.similarity(embeddings, embeddings)
|
190 |
+
print(similarities)
|
191 |
+
# tensor([[ 1.0000, -0.0963, -0.2026],
|
192 |
+
# [-0.0963, 1.0000, 0.9080],
|
193 |
+
# [-0.2026, 0.9080, 1.0000]])
|
194 |
+
```
|
195 |
+
|
196 |
+
<!--
|
197 |
+
### Direct Usage (Transformers)
|
198 |
+
|
199 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
200 |
+
|
201 |
+
</details>
|
202 |
+
-->
|
203 |
+
|
204 |
+
<!--
|
205 |
+
### Downstream Usage (Sentence Transformers)
|
206 |
+
|
207 |
+
You can finetune this model on your own dataset.
|
208 |
+
|
209 |
+
<details><summary>Click to expand</summary>
|
210 |
+
|
211 |
+
</details>
|
212 |
+
-->
|
213 |
+
|
214 |
+
<!--
|
215 |
+
### Out-of-Scope Use
|
216 |
+
|
217 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
218 |
+
-->
|
219 |
+
|
220 |
+
## Evaluation
|
221 |
+
|
222 |
+
### Metrics
|
223 |
+
|
224 |
+
#### Triplet
|
225 |
+
|
226 |
+
* Dataset: `cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation_cell_sentence_1`
|
227 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
228 |
+
|
229 |
+
| Metric | Value |
|
230 |
+
|:--------------------|:-----------|
|
231 |
+
| **cosine_accuracy** | **0.5158** |
|
232 |
+
|
233 |
+
<!--
|
234 |
+
## Bias, Risks and Limitations
|
235 |
+
|
236 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
237 |
+
-->
|
238 |
+
|
239 |
+
<!--
|
240 |
+
### Recommendations
|
241 |
+
|
242 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
243 |
+
-->
|
244 |
+
|
245 |
+
## Training Details
|
246 |
+
|
247 |
+
### Training Dataset
|
248 |
+
|
249 |
+
#### cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation
|
250 |
+
|
251 |
+
* Dataset: [cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation](https://huggingface.co/datasets/jo-mengr/cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation) at [9916878](https://huggingface.co/datasets/jo-mengr/cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation/tree/9916878bbf20fb8f9d6a0be4c997236e027cabd4)
|
252 |
+
* Size: 81,143 training samples
|
253 |
+
* Columns: <code>anchor</code>, <code>positive</code>, <code>negative_1</code>, and <code>negative_2</code>
|
254 |
+
* Approximate statistics based on the first 1000 samples:
|
255 |
+
| | anchor | positive | negative_1 | negative_2 |
|
256 |
+
|:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
|
257 |
+
| type | string | string | string | string |
|
258 |
+
| details | <ul><li>min: 56 characters</li><li>mean: 58.72 characters</li><li>max: 60 characters</li></ul> | <ul><li>min: 92 characters</li><li>mean: 216.13 characters</li><li>max: 900 characters</li></ul> | <ul><li>min: 101 characters</li><li>mean: 215.14 characters</li><li>max: 870 characters</li></ul> | <ul><li>min: 56 characters</li><li>mean: 58.75 characters</li><li>max: 60 characters</li></ul> |
|
259 |
+
* Samples:
|
260 |
+
| anchor | positive | negative_1 | negative_2 |
|
261 |
+
|:--------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------|
|
262 |
+
| <code>sample_idx:census_218acb0f-9f2f-4f76-b90b-15a4b7c7f629_26009</code> | <code>This measurement was conducted with 10x 3' v2. A proliferating lymphocyte cell sample, obtained from a 34-year-old female Asian individual, derived from peripheral blood mononuclear cells.</code> | <code>This measurement was conducted with 10x 3' v2. Sample is a 25-year-old female with European ethnicity, having CD8-positive, alpha-beta T cell type. This cell type exhibits elevated expression of type 1 interferon-stimulated genes (ISGs) in monocytes, reduction of naïve CD4+ T cells correlating with monocyte ISG expression, and expansion of repertoire-restricted cytotoxic GZMH+ CD8+ T cells.</code> | <code>sample_idx:census_218acb0f-9f2f-4f76-b90b-15a4b7c7f629_14165</code> |
|
263 |
+
| <code>sample_idx:census_1b9d8702-5af8-4142-85ed-020eb06ec4f6_6333</code> | <code>This measurement was conducted with 10x 5' v1. Sample is a cell from the omentum tissue, specifically an effector memory CD4-positive, alpha-beta T cell, from a female in her sixth decade.</code> | <code>This measurement was conducted with 10x 5' v2. Conventional dendritic cell from the jejunal epithelium of a female in her eighth decade.</code> | <code>sample_idx:census_1b9d8702-5af8-4142-85ed-020eb06ec4f6_2714</code> |
|
264 |
+
| <code>sample_idx:census_adda0684-f8ea-4403-b393-2a25607077c4_271</code> | <code>This measurement was conducted with 10x 3' v3. Neuron cell type from a 29-year-old male, specifically from the thalamic complex, specifically the thalamus (THM) - posterior nuclear complex of thalamus (PoN) - medial geniculate nuclei (MG).</code> | <code>This measurement was conducted with 10x 3' v3. Neuron from the thalamic complex (thalamus, posterior nuclear complex of thalamus, medial geniculate nuclei) of a 42-year-old male, identified as a midbrain-derived inhibitory neuron.</code> | <code>sample_idx:census_adda0684-f8ea-4403-b393-2a25607077c4_425</code> |
|
265 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
266 |
+
```json
|
267 |
+
{
|
268 |
+
"scale": 20.0,
|
269 |
+
"similarity_fct": "cos_sim"
|
270 |
+
}
|
271 |
+
```
|
272 |
+
|
273 |
+
### Evaluation Dataset
|
274 |
+
|
275 |
+
#### cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation
|
276 |
+
|
277 |
+
* Dataset: [cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation](https://huggingface.co/datasets/jo-mengr/cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation) at [9916878](https://huggingface.co/datasets/jo-mengr/cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation/tree/9916878bbf20fb8f9d6a0be4c997236e027cabd4)
|
278 |
+
* Size: 9,011 evaluation samples
|
279 |
+
* Columns: <code>anchor</code>, <code>positive</code>, <code>negative_1</code>, and <code>negative_2</code>
|
280 |
+
* Approximate statistics based on the first 1000 samples:
|
281 |
+
| | anchor | positive | negative_1 | negative_2 |
|
282 |
+
|:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
|
283 |
+
| type | string | string | string | string |
|
284 |
+
| details | <ul><li>min: 56 characters</li><li>mean: 58.73 characters</li><li>max: 60 characters</li></ul> | <ul><li>min: 99 characters</li><li>mean: 209.99 characters</li><li>max: 941 characters</li></ul> | <ul><li>min: 102 characters</li><li>mean: 213.87 characters</li><li>max: 981 characters</li></ul> | <ul><li>min: 56 characters</li><li>mean: 58.73 characters</li><li>max: 60 characters</li></ul> |
|
285 |
+
* Samples:
|
286 |
+
| anchor | positive | negative_1 | negative_2 |
|
287 |
+
|:--------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------|
|
288 |
+
| <code>sample_idx:census_0b4a15a7-4e9e-4555-9733-2423e5c66469_490</code> | <code>This measurement was conducted with 10x 3' v3. Cell sample from the cortex of kidney, taken from a 43-year-old male of European ethnicity with a reported history of kidney cancer. The cell type is identified as a kidney collecting duct intercalated cell.</code> | <code>This measurement was conducted with 10x 3' v3. Kidney collecting duct intercalated cell from a 43-year old European male with kidney cancer, taken from the cortex of kidney and cryopreserved for further analysis.</code> | <code>sample_idx:census_0b4a15a7-4e9e-4555-9733-2423e5c66469_9</code> |
|
289 |
+
| <code>sample_idx:census_4976b234-9028-4b4b-8a2f-8ac59d636219_269</code> | <code>This measurement was conducted with 10x 3' v3. Neuron cell type from a 29-year-old male cerebellum, specifically from the Cerebellar Vermis - CBV region, with European self-reported ethnicity, analyzed at the nucleus level.</code> | <code>This measurement was conducted with 10x 3' v3. Endothelial cells derived from the cerebellum (specifically, cerebellar vermis) of a 42-year-old male, classified under the vascular supercluster term.</code> | <code>sample_idx:census_4976b234-9028-4b4b-8a2f-8ac59d636219_923</code> |
|
290 |
+
| <code>sample_idx:census_44882825-0da1-4547-b721-2c6105d4a9d1_10258</code> | <code>This measurement was conducted with 10x 5' v1. Cell sample from the tonsil of a 9-year-old female with recurrent tonsillitis, characterized as a centroblast B cell with IGLC2, IGLV7-43, IGLJ3 immunoglobulin genes expressed.</code> | <code>This measurement was conducted with 10x 5' v1. Centroblast cells derived from a 3-year-old male human tonsil sample, with obstructive sleep apnea and recurrent tonsillitis, undergoing affinity maturation and differentiation into memory or plasma cells.</code> | <code>sample_idx:census_44882825-0da1-4547-b721-2c6105d4a9d1_9654</code> |
|
291 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
292 |
+
```json
|
293 |
+
{
|
294 |
+
"scale": 20.0,
|
295 |
+
"similarity_fct": "cos_sim"
|
296 |
+
}
|
297 |
+
```
|
298 |
+
|
299 |
+
### Training Hyperparameters
|
300 |
+
#### Non-Default Hyperparameters
|
301 |
+
|
302 |
+
- `eval_strategy`: steps
|
303 |
+
- `per_device_train_batch_size`: 256
|
304 |
+
- `per_device_eval_batch_size`: 256
|
305 |
+
- `learning_rate`: 0.05
|
306 |
+
- `num_train_epochs`: 4
|
307 |
+
- `warmup_ratio`: 0.1
|
308 |
+
- `bf16`: True
|
309 |
+
|
310 |
+
#### All Hyperparameters
|
311 |
+
<details><summary>Click to expand</summary>
|
312 |
+
|
313 |
+
- `overwrite_output_dir`: False
|
314 |
+
- `do_predict`: False
|
315 |
+
- `eval_strategy`: steps
|
316 |
+
- `prediction_loss_only`: True
|
317 |
+
- `per_device_train_batch_size`: 256
|
318 |
+
- `per_device_eval_batch_size`: 256
|
319 |
+
- `per_gpu_train_batch_size`: None
|
320 |
+
- `per_gpu_eval_batch_size`: None
|
321 |
+
- `gradient_accumulation_steps`: 1
|
322 |
+
- `eval_accumulation_steps`: None
|
323 |
+
- `torch_empty_cache_steps`: None
|
324 |
+
- `learning_rate`: 0.05
|
325 |
+
- `weight_decay`: 0.0
|
326 |
+
- `adam_beta1`: 0.9
|
327 |
+
- `adam_beta2`: 0.999
|
328 |
+
- `adam_epsilon`: 1e-08
|
329 |
+
- `max_grad_norm`: 1.0
|
330 |
+
- `num_train_epochs`: 4
|
331 |
+
- `max_steps`: -1
|
332 |
+
- `lr_scheduler_type`: linear
|
333 |
+
- `lr_scheduler_kwargs`: {}
|
334 |
+
- `warmup_ratio`: 0.1
|
335 |
+
- `warmup_steps`: 0
|
336 |
+
- `log_level`: passive
|
337 |
+
- `log_level_replica`: warning
|
338 |
+
- `log_on_each_node`: True
|
339 |
+
- `logging_nan_inf_filter`: True
|
340 |
+
- `save_safetensors`: True
|
341 |
+
- `save_on_each_node`: False
|
342 |
+
- `save_only_model`: False
|
343 |
+
- `restore_callback_states_from_checkpoint`: False
|
344 |
+
- `no_cuda`: False
|
345 |
+
- `use_cpu`: False
|
346 |
+
- `use_mps_device`: False
|
347 |
+
- `seed`: 42
|
348 |
+
- `data_seed`: None
|
349 |
+
- `jit_mode_eval`: False
|
350 |
+
- `use_ipex`: False
|
351 |
+
- `bf16`: True
|
352 |
+
- `fp16`: False
|
353 |
+
- `fp16_opt_level`: O1
|
354 |
+
- `half_precision_backend`: auto
|
355 |
+
- `bf16_full_eval`: False
|
356 |
+
- `fp16_full_eval`: False
|
357 |
+
- `tf32`: None
|
358 |
+
- `local_rank`: 0
|
359 |
+
- `ddp_backend`: None
|
360 |
+
- `tpu_num_cores`: None
|
361 |
+
- `tpu_metrics_debug`: False
|
362 |
+
- `debug`: []
|
363 |
+
- `dataloader_drop_last`: False
|
364 |
+
- `dataloader_num_workers`: 0
|
365 |
+
- `dataloader_prefetch_factor`: None
|
366 |
+
- `past_index`: -1
|
367 |
+
- `disable_tqdm`: False
|
368 |
+
- `remove_unused_columns`: True
|
369 |
+
- `label_names`: None
|
370 |
+
- `load_best_model_at_end`: False
|
371 |
+
- `ignore_data_skip`: False
|
372 |
+
- `fsdp`: []
|
373 |
+
- `fsdp_min_num_params`: 0
|
374 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
375 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
376 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
377 |
+
- `deepspeed`: None
|
378 |
+
- `label_smoothing_factor`: 0.0
|
379 |
+
- `optim`: adamw_torch
|
380 |
+
- `optim_args`: None
|
381 |
+
- `adafactor`: False
|
382 |
+
- `group_by_length`: False
|
383 |
+
- `length_column_name`: length
|
384 |
+
- `ddp_find_unused_parameters`: None
|
385 |
+
- `ddp_bucket_cap_mb`: None
|
386 |
+
- `ddp_broadcast_buffers`: False
|
387 |
+
- `dataloader_pin_memory`: True
|
388 |
+
- `dataloader_persistent_workers`: False
|
389 |
+
- `skip_memory_metrics`: True
|
390 |
+
- `use_legacy_prediction_loop`: False
|
391 |
+
- `push_to_hub`: False
|
392 |
+
- `resume_from_checkpoint`: None
|
393 |
+
- `hub_model_id`: None
|
394 |
+
- `hub_strategy`: every_save
|
395 |
+
- `hub_private_repo`: None
|
396 |
+
- `hub_always_push`: False
|
397 |
+
- `hub_revision`: None
|
398 |
+
- `gradient_checkpointing`: False
|
399 |
+
- `gradient_checkpointing_kwargs`: None
|
400 |
+
- `include_inputs_for_metrics`: False
|
401 |
+
- `include_for_metrics`: []
|
402 |
+
- `eval_do_concat_batches`: True
|
403 |
+
- `fp16_backend`: auto
|
404 |
+
- `push_to_hub_model_id`: None
|
405 |
+
- `push_to_hub_organization`: None
|
406 |
+
- `mp_parameters`:
|
407 |
+
- `auto_find_batch_size`: False
|
408 |
+
- `full_determinism`: False
|
409 |
+
- `torchdynamo`: None
|
410 |
+
- `ray_scope`: last
|
411 |
+
- `ddp_timeout`: 1800
|
412 |
+
- `torch_compile`: False
|
413 |
+
- `torch_compile_backend`: None
|
414 |
+
- `torch_compile_mode`: None
|
415 |
+
- `include_tokens_per_second`: False
|
416 |
+
- `include_num_input_tokens_seen`: False
|
417 |
+
- `neftune_noise_alpha`: None
|
418 |
+
- `optim_target_modules`: None
|
419 |
+
- `batch_eval_metrics`: False
|
420 |
+
- `eval_on_start`: False
|
421 |
+
- `use_liger_kernel`: False
|
422 |
+
- `liger_kernel_config`: None
|
423 |
+
- `eval_use_gather_object`: False
|
424 |
+
- `average_tokens_across_devices`: False
|
425 |
+
- `prompts`: None
|
426 |
+
- `batch_sampler`: batch_sampler
|
427 |
+
- `multi_dataset_batch_sampler`: proportional
|
428 |
+
- `router_mapping`: {}
|
429 |
+
- `learning_rate_mapping`: {}
|
430 |
+
|
431 |
+
</details>
|
432 |
+
|
433 |
+
### Training Logs
|
434 |
+
| Epoch | Step | Training Loss | cellxgene pseudo bulk 100k multiplets natural language annotation loss | cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation_cell_sentence_1_cosine_accuracy |
|
435 |
+
|:------:|:----:|:-------------:|:----------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------:|
|
436 |
+
| 0.3155 | 100 | 4.3241 | 22.9958 | 0.5035 |
|
437 |
+
| 0.6309 | 200 | 3.2968 | 21.9224 | 0.5026 |
|
438 |
+
| 0.9464 | 300 | 2.9589 | 21.0856 | 0.5008 |
|
439 |
+
| 1.2618 | 400 | 2.7865 | 21.0013 | 0.5055 |
|
440 |
+
| 1.5773 | 500 | 2.6859 | 19.5792 | 0.5096 |
|
441 |
+
| 1.8927 | 600 | 2.6192 | 19.5848 | 0.5105 |
|
442 |
+
| 2.2082 | 700 | 2.5577 | 19.8195 | 0.5115 |
|
443 |
+
| 2.5237 | 800 | 2.4599 | 18.7359 | 0.5118 |
|
444 |
+
| 2.8391 | 900 | 2.4419 | 18.0783 | 0.5138 |
|
445 |
+
| 3.1546 | 1000 | 2.423 | 17.2768 | 0.5156 |
|
446 |
+
| 3.4700 | 1100 | 2.4112 | 16.9335 | 0.5164 |
|
447 |
+
| 3.7855 | 1200 | 2.4067 | 16.4885 | 0.5158 |
|
448 |
+
|
449 |
+
|
450 |
+
### Framework Versions
|
451 |
+
- Python: 3.11.6
|
452 |
+
- Sentence Transformers: 5.0.0
|
453 |
+
- Transformers: 4.55.0.dev0
|
454 |
+
- PyTorch: 2.5.1+cu121
|
455 |
+
- Accelerate: 1.9.0
|
456 |
+
- Datasets: 2.19.1
|
457 |
+
- Tokenizers: 0.21.4
|
458 |
+
|
459 |
+
## Citation
|
460 |
+
|
461 |
+
### BibTeX
|
462 |
+
|
463 |
+
#### Sentence Transformers
|
464 |
+
```bibtex
|
465 |
+
@inproceedings{reimers-2019-sentence-bert,
|
466 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
467 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
468 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
469 |
+
month = "11",
|
470 |
+
year = "2019",
|
471 |
+
publisher = "Association for Computational Linguistics",
|
472 |
+
url = "https://arxiv.org/abs/1908.10084",
|
473 |
+
}
|
474 |
+
```
|
475 |
+
|
476 |
+
#### MultipleNegativesRankingLoss
|
477 |
+
```bibtex
|
478 |
+
@misc{henderson2017efficient,
|
479 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
480 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
481 |
+
year={2017},
|
482 |
+
eprint={1705.00652},
|
483 |
+
archivePrefix={arXiv},
|
484 |
+
primaryClass={cs.CL}
|
485 |
+
}
|
486 |
+
```
|
487 |
+
|
488 |
+
<!--
|
489 |
+
## Glossary
|
490 |
+
|
491 |
+
*Clearly define terms in order to be accessible across audiences.*
|
492 |
+
-->
|
493 |
+
|
494 |
+
<!--
|
495 |
+
## Model Card Authors
|
496 |
+
|
497 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
498 |
+
-->
|
499 |
+
|
500 |
+
<!--
|
501 |
+
## Model Card Contact
|
502 |
+
|
503 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
504 |
+
-->
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_type": "SentenceTransformer",
|
3 |
+
"__version__": {
|
4 |
+
"sentence_transformers": "5.0.0",
|
5 |
+
"transformers": "4.55.0.dev0",
|
6 |
+
"pytorch": "2.5.1+cu121"
|
7 |
+
},
|
8 |
+
"prompts": {
|
9 |
+
"query": "",
|
10 |
+
"document": ""
|
11 |
+
},
|
12 |
+
"default_prompt_name": null,
|
13 |
+
"similarity_fn_name": "cosine"
|
14 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "0_MMContextEncoder",
|
6 |
+
"type": "mmcontext.models.mmcontextencoder.MMContextEncoder"
|
7 |
+
}
|
8 |
+
]
|