import os import logging from collections import OrderedDict import math from typing import Callable, Optional, Sequence import torch from torch import nn from torch.nn import functional as F if os.getenv('ENV_TYPE') == 'deepspeed': try: import deepspeed from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint except: print("Please 'pip install deepspeed'") deepspeed = None from torch.utils.checkpoint import checkpoint else: from torch.utils.checkpoint import checkpoint try: import xformers.ops as xops except ImportError: xops = None print("Please 'pip install xformers'") class LayerNormFp32(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back).""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def forward(self, x: torch.Tensor): output = F.layer_norm( x.float(), self.normalized_shape, self.weight.float() if self.weight is not None else None, self.bias.float() if self.bias is not None else None, self.eps, ) return output.type_as(x) class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm (with cast back to input dtype).""" def forward(self, x: torch.Tensor): orig_type = x.dtype x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) return x.to(orig_type) class QuickGELU(nn.Module): # NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class LayerScale(nn.Module): def __init__(self, dim, init_values=1e-5, inplace=False): super().__init__() self.inplace = inplace self.gamma = nn.Parameter(init_values * torch.ones(dim)) def forward(self, x): return x.mul_(self.gamma) if self.inplace else x * self.gamma class PatchDropout(nn.Module): """ https://arxiv.org/abs/2212.00794 """ def __init__(self, prob, exclude_first_token=True): super().__init__() assert 0 <= prob < 1. self.prob = prob self.exclude_first_token = exclude_first_token # exclude CLS token logging.info(f"os.getenv('RoPE')={os.getenv('RoPE')}") def forward(self, x): if not self.training or self.prob == 0.: return x if self.exclude_first_token: cls_tokens, x = x[:, :1], x[:, 1:] else: cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1]) batch = x.size()[0] num_tokens = x.size()[1] batch_indices = torch.arange(batch) batch_indices = batch_indices[..., None] keep_prob = 1 - self.prob num_patches_keep = max(1, int(num_tokens * keep_prob)) rand = torch.randn(batch, num_tokens) patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices x = x[batch_indices, patch_indices_keep] if self.exclude_first_token: x = torch.cat((cls_tokens, x), dim=1) if self.training and os.getenv('RoPE') == '1': return x, patch_indices_keep return x def _in_projection_packed( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, w: torch.Tensor, b: Optional[torch.Tensor] = None, ): """ https://github.com/pytorch/pytorch/blob/db2a237763eb8693a20788be94f8c192e762baa8/torch/nn/functional.py#L4726 """ E = q.size(-1) if k is v: if q is k: # self-attention return F.linear(q, w, b).chunk(3, dim=-1) else: # encoder-decoder attention w_q, w_kv = w.split([E, E * 2]) if b is None: b_q = b_kv = None else: b_q, b_kv = b.split([E, E * 2]) return (F.linear(q, w_q, b_q),) + F.linear(k, w_kv, b_kv).chunk(2, dim=-1) else: w_q, w_k, w_v = w.chunk(3) if b is None: b_q = b_k = b_v = None else: b_q, b_k, b_v = b.chunk(3) return F.linear(q, w_q, b_q), F.linear(k, w_k, b_k), F.linear(v, w_v, b_v) class Attention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=True, scaled_cosine=False, scale_heads=False, logit_scale_max=math.log(1. / 0.01), attn_drop=0., proj_drop=0., xattn=False, rope=False ): super().__init__() self.scaled_cosine = scaled_cosine self.scale_heads = scale_heads assert dim % num_heads == 0, 'dim should be divisible by num_heads' self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim ** -0.5 self.logit_scale_max = logit_scale_max # keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale) if qkv_bias: self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3)) else: self.in_proj_bias = None if self.scaled_cosine: self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1)))) else: self.logit_scale = None self.attn_drop = nn.Dropout(attn_drop) if self.scale_heads: self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1))) else: self.head_scale = None self.out_proj = nn.Linear(dim, dim) self.out_drop = nn.Dropout(proj_drop) self.xattn = xattn self.xattn_drop = attn_drop self.rope = rope def forward(self, x, attn_mask: Optional[torch.Tensor] = None): L, N, C = x.shape q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1) if self.xattn: q = q.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1) k = k.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1) v = v.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1) x = xops.memory_efficient_attention( q, k, v, p=self.xattn_drop, scale=self.scale if self.logit_scale is None else None, attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None, ) else: q = q.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) k = k.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) v = v.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) if self.logit_scale is not None: attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2)) logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp() attn = attn.view(N, self.num_heads, L, L) * logit_scale attn = attn.view(-1, L, L) else: q = q * self.scale attn = torch.bmm(q, k.transpose(-1, -2)) if attn_mask is not None: if attn_mask.dtype == torch.bool: new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype) new_attn_mask.masked_fill_(attn_mask, float("-inf")) attn_mask = new_attn_mask attn += attn_mask attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = torch.bmm(attn, v) if self.head_scale is not None: x = x.view(N, self.num_heads, L, C) * self.head_scale x = x.view(-1, L, C) x = x.transpose(0, 1).reshape(L, N, C) x = self.out_proj(x) x = self.out_drop(x) return x class CustomAttention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=True, scaled_cosine=True, scale_heads=False, logit_scale_max=math.log(1. / 0.01), attn_drop=0., proj_drop=0., xattn=False ): super().__init__() self.scaled_cosine = scaled_cosine self.scale_heads = scale_heads assert dim % num_heads == 0, 'dim should be divisible by num_heads' self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim ** -0.5 self.logit_scale_max = logit_scale_max # keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale) if qkv_bias: self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3)) else: self.in_proj_bias = None if self.scaled_cosine: self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1)))) else: self.logit_scale = None self.attn_drop = nn.Dropout(attn_drop) if self.scale_heads: self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1))) else: self.head_scale = None self.out_proj = nn.Linear(dim, dim) self.out_drop = nn.Dropout(proj_drop) self.xattn = xattn self.xattn_drop = attn_drop def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): q, k, v = _in_projection_packed(query, key, value, self.in_proj_weight, self.in_proj_bias) N_q, B_q, C_q = q.shape N_k, B_k, C_k = k.shape N_v, B_v, C_v = v.shape if self.xattn: # B, N, C -> B, N, num_heads, C q = q.permute(1, 0, 2).reshape(B_q, N_q, self.num_heads, -1) k = k.permute(1, 0, 2).reshape(B_k, N_k, self.num_heads, -1) v = v.permute(1, 0, 2).reshape(B_v, N_v, self.num_heads, -1) x = xops.memory_efficient_attention( q, k, v, p=self.xattn_drop, scale=self.scale if self.logit_scale is None else None, attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None ) else: # B*H, L, C q = q.contiguous().view(N_q, B_q * self.num_heads, -1).transpose(0, 1) k = k.contiguous().view(N_k, B_k * self.num_heads, -1).transpose(0, 1) v = v.contiguous().view(N_v, B_v * self.num_heads, -1).transpose(0, 1) if self.logit_scale is not None: # B*H, N_q, N_k attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2)) logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp() attn = attn.view(B_q, self.num_heads, N_q, N_k) * logit_scale attn = attn.view(-1, N_q, N_k) else: q = q * self.scale attn = torch.bmm(q, k.transpose(-1, -2)) if attn_mask is not None: if attn_mask.dtype == torch.bool: new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype) new_attn_mask.masked_fill_(attn_mask, float("-inf")) attn_mask = new_attn_mask attn += attn_mask attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = torch.bmm(attn, v) if self.head_scale is not None: x = x.view(B_q, self.num_heads, N_q, C_q) * self.head_scale x = x.view(-1, N_q, C_q) x = x.transpose(0, 1).reshape(N_q, B_q, C_q) x = self.out_proj(x) x = self.out_drop(x) return x class CustomResidualAttentionBlock(nn.Module): def __init__( self, d_model: int, n_head: int, mlp_ratio: float = 4.0, ls_init_value: float = None, act_layer: Callable = nn.GELU, norm_layer: Callable = LayerNorm, scale_cosine_attn: bool = False, scale_heads: bool = False, scale_attn: bool = False, scale_fc: bool = False, cross_attn: bool = False, xattn: bool = False, ): super().__init__() self.ln_1 = norm_layer(d_model) self.ln_1_k = norm_layer(d_model) if cross_attn else self.ln_1 self.ln_1_v = norm_layer(d_model) if cross_attn else self.ln_1 self.attn = CustomAttention( d_model, n_head, qkv_bias=True, attn_drop=0., proj_drop=0., scaled_cosine=scale_cosine_attn, scale_heads=scale_heads, xattn=xattn ) self.ln_attn = norm_layer(d_model) if scale_attn else nn.Identity() self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() self.ln_2 = norm_layer(d_model) mlp_width = int(d_model * mlp_ratio) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, mlp_width)), ('ln', norm_layer(mlp_width) if scale_fc else nn.Identity()), ("gelu", act_layer()), ("c_proj", nn.Linear(mlp_width, d_model)) ])) self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): q = q + self.ls_1(self.ln_attn(self.attn(self.ln_1(q), self.ln_1_k(k), self.ln_1_v(v), attn_mask=attn_mask))) q = q + self.ls_2(self.mlp(self.ln_2(q))) return q class CustomTransformer(nn.Module): def __init__( self, width: int, layers: int, heads: int, mlp_ratio: float = 4.0, ls_init_value: float = None, act_layer: Callable = nn.GELU, norm_layer: Callable = LayerNorm, scale_cosine_attn: bool = True, scale_heads: bool = False, scale_attn: bool = False, scale_fc: bool = False, cross_attn: bool = False, xattn: bool = False, ): super().__init__() self.width = width self.layers = layers self.grad_checkpointing = False self.xattn = xattn self.resblocks = nn.ModuleList([ CustomResidualAttentionBlock( width, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer, scale_cosine_attn=scale_cosine_attn, scale_heads=scale_heads, scale_attn=scale_attn, scale_fc=scale_fc, cross_attn=cross_attn, xattn=xattn) for _ in range(layers) ]) def get_cast_dtype(self) -> torch.dtype: return self.resblocks[0].mlp.c_fc.weight.dtype def forward(self, q: torch.Tensor, k: torch.Tensor = None, v: torch.Tensor = None, attn_mask: Optional[torch.Tensor] = None): if k is None and v is None: k = v = q for r in self.resblocks: if self.grad_checkpointing and not torch.jit.is_scripting(): q = checkpoint(r, q, k, v, attn_mask) else: q = r(q, k, v, attn_mask=attn_mask) return q class ResidualAttentionBlock(nn.Module): def __init__( self, d_model: int, n_head: int, mlp_ratio: float = 4.0, ls_init_value: float = None, act_layer: Callable = nn.GELU, norm_layer: Callable = LayerNorm, xattn: bool = False, ): super().__init__() self.ln_1 = norm_layer(d_model) if xattn: self.attn = Attention(d_model, n_head, xattn=True) else: self.attn = nn.MultiheadAttention(d_model, n_head) self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() self.ln_2 = norm_layer(d_model) mlp_width = int(d_model * mlp_ratio) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, mlp_width)), ("gelu", act_layer()), ("c_proj", nn.Linear(mlp_width, d_model)) ])) self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() self.xattn = xattn def attention(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): attn_mask = attn_mask.to(x.dtype) if attn_mask is not None else None if self.xattn: return self.attn(x, attn_mask=attn_mask) return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0] def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): x = x + self.ls_1(self.attention(self.ln_1(x), attn_mask=attn_mask)) x = x + self.ls_2(self.mlp(self.ln_2(x))) return x class Transformer(nn.Module): def __init__( self, width: int, layers: int, heads: int, mlp_ratio: float = 4.0, ls_init_value: float = None, act_layer: Callable = nn.GELU, norm_layer: Callable = LayerNorm, xattn: bool = False, ): super().__init__() self.width = width self.layers = layers self.grad_checkpointing = False self.resblocks = nn.ModuleList([ ResidualAttentionBlock( width, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer, xattn=xattn) for _ in range(layers) ]) def get_cast_dtype(self) -> torch.dtype: return self.resblocks[0].mlp.c_fc.weight.dtype def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): for r in self.resblocks: if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint(r, x, attn_mask) else: x = r(x, attn_mask=attn_mask) return x class TextTransformer(nn.Module): def __init__( self, context_length: int = 77, vocab_size: int = 49408, width: int = 512, heads: int = 8, layers: int = 12, ls_init_value: float = None, output_dim: int = 512, act_layer: Callable = nn.GELU, norm_layer: Callable = LayerNorm, xattn: bool= False, attn_mask: bool = True ): super().__init__() self.context_length = context_length self.vocab_size = vocab_size self.width = width self.output_dim = output_dim self.token_embedding = nn.Embedding(vocab_size, width) self.positional_embedding = nn.Parameter(torch.empty(self.context_length, width)) self.transformer = Transformer( width=width, layers=layers, heads=heads, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer, xattn=xattn ) self.xattn = xattn self.ln_final = norm_layer(width) self.text_projection = nn.Parameter(torch.empty(width, output_dim)) if attn_mask: self.register_buffer('attn_mask', self.build_attention_mask(), persistent=False) else: self.attn_mask = None self.init_parameters() def init_parameters(self): nn.init.normal_(self.token_embedding.weight, std=0.02) nn.init.normal_(self.positional_embedding, std=0.01) proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) attn_std = self.transformer.width ** -0.5 fc_std = (2 * self.transformer.width) ** -0.5 for block in self.transformer.resblocks: nn.init.normal_(block.attn.in_proj_weight, std=attn_std) nn.init.normal_(block.attn.out_proj.weight, std=proj_std) nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) if self.text_projection is not None: nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) def lock(self, unlocked_layers:int=0, freeze_layer_norm:bool=True): if not unlocked_layers: # full freezing for n, p in self.named_parameters(): p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False else: raise ValueError("Not support partial freeze") @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.transformer.grad_checkpointing = enable @torch.jit.ignore def no_weight_decay(self): # return {'positional_embedding', 'token_embedding'} return {'positional_embedding'} def get_num_layers(self): return self.transformer.layers def build_attention_mask(self): # lazily create causal attention mask, with full attention between the vision tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(self.context_length, self.context_length) mask.fill_(float("-inf")) mask.triu_(1) # zero out the lower diagonal return mask def forward(self, text, return_all_features: bool=False): cast_dtype = self.transformer.get_cast_dtype() x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model] x = x + self.positional_embedding.to(cast_dtype) x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x, attn_mask=self.attn_mask) # x = self.transformer(x) # no attention mask is applied x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_final(x) if not return_all_features: # x.shape = [batch_size, n_ctx, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection return x def text_transformer(): model = TextTransformer( width=1024, output_dim=1024, heads=16, layers=24, xattn=True ) return model