# ๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜ # MiniMind Config # ๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜ from transformers import PretrainedConfig class MiniMindConfig(PretrainedConfig): model_type = "minimind" def __init__( self, dropout: float = 0.0, bos_token_id: int = 1, eos_token_id: int = 2, hidden_act: str = 'silu', hidden_size: int = 512, intermediate_size: int = None, max_position_embeddings: int = 32768, num_attention_heads: int = 8, num_hidden_layers: int = 8, num_key_value_heads: int = 2, vocab_size: int = 6400, rms_norm_eps: float = 1e-05, rope_theta: int = 1000000.0, flash_attn: bool = True, #################################################### # Here are the specific configurations of MOE # When use_moe is false, the following is invalid #################################################### use_moe: bool = False, num_experts_per_tok: int = 2, n_routed_experts: int = 4, n_shared_experts: int = 1, scoring_func: str = 'softmax', aux_loss_alpha: float = 0.1, seq_aux: bool = True, norm_topk_prob: bool = True, **kwargs ): super().__init__(**kwargs) self.dropout = dropout self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.hidden_act = hidden_act self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.max_position_embeddings = max_position_embeddings self.num_attention_heads = num_attention_heads self.num_hidden_layers = num_hidden_layers self.num_key_value_heads = num_key_value_heads self.vocab_size = vocab_size self.rms_norm_eps = rms_norm_eps self.rope_theta = rope_theta self.flash_attn = flash_attn #################################################### # Here are the specific configurations of MOE # When use_moe is false, the following is invalid #################################################### self.use_moe = use_moe self.num_experts_per_tok = num_experts_per_tok # ๆฏไธชtoken้€‰ๆ‹ฉ็š„ไธ“ๅฎถๆ•ฐ้‡ self.n_routed_experts = n_routed_experts # ๆ€ป็š„ไธ“ๅฎถๆ•ฐ้‡ self.n_shared_experts = n_shared_experts # ๅ…ฑไบซไธ“ๅฎถ self.scoring_func = scoring_func # ่ฏ„ๅˆ†ๅ‡ฝๆ•ฐ๏ผŒ้ป˜่ฎคไธบ'softmax' self.aux_loss_alpha = aux_loss_alpha # ่พ…ๅŠฉๆŸๅคฑ็š„alphaๅ‚ๆ•ฐ self.seq_aux = seq_aux # ๆ˜ฏๅฆๅœจๅบๅˆ—็บงๅˆซไธŠ่ฎก็ฎ—่พ…ๅŠฉๆŸๅคฑ self.norm_topk_prob = norm_topk_prob # ๆ˜ฏๅฆๆ ‡ๅ‡†ๅŒ–top-kๆฆ‚็އ # ๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜ # MiniMind Model # ๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜ import math import torch from torch import nn from transformers.activations import ACT2FN from typing import Optional, Tuple, List, Union import torch.nn.functional as F from transformers import PreTrainedModel, GenerationMixin, PretrainedConfig from transformers.modeling_outputs import CausalLMOutputWithPast class RMSNorm(torch.nn.Module): def __init__(self, dim: int, eps: float = 1e-5): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def _norm(self, x): return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) def forward(self, x): return self.weight * self._norm(x.float()).type_as(x) def precompute_freqs_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6): freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) t = torch.arange(end, device=freqs.device) freqs = torch.outer(t, freqs).float() freqs_cos = torch.cat([torch.cos(freqs), torch.cos(freqs)], dim=-1) freqs_sin = torch.cat([torch.sin(freqs), torch.sin(freqs)], dim=-1) return freqs_cos, freqs_sin def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): def rotate_half(x): return torch.cat((-x[..., x.shape[-1] // 2:], x[..., : x.shape[-1] // 2]), dim=-1) q_embed = (q * cos.unsqueeze(unsqueeze_dim)) + (rotate_half(q) * sin.unsqueeze(unsqueeze_dim)) k_embed = (k * cos.unsqueeze(unsqueeze_dim)) + (rotate_half(k) * sin.unsqueeze(unsqueeze_dim)) return q_embed, k_embed def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor: """torch.repeat_interleave(x, dim=2, repeats=n_rep)""" bs, slen, num_key_value_heads, head_dim = x.shape if n_rep == 1: return x return ( x[:, :, :, None, :] .expand(bs, slen, num_key_value_heads, n_rep, head_dim) .reshape(bs, slen, num_key_value_heads * n_rep, head_dim) ) class Attention(nn.Module): def __init__(self, args: MiniMindConfig): super().__init__() self.num_key_value_heads = args.num_attention_heads if args.num_key_value_heads is None else args.num_key_value_heads assert args.num_attention_heads % self.num_key_value_heads == 0 self.n_local_heads = args.num_attention_heads self.n_local_kv_heads = self.num_key_value_heads self.n_rep = self.n_local_heads // self.n_local_kv_heads self.head_dim = args.hidden_size // args.num_attention_heads self.q_proj = nn.Linear(args.hidden_size, args.num_attention_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(args.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(args.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(args.num_attention_heads * self.head_dim, args.hidden_size, bias=False) self.attn_dropout = nn.Dropout(args.dropout) self.resid_dropout = nn.Dropout(args.dropout) self.dropout = args.dropout self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn # print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0") def forward(self, x: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], # ไฟฎๆ”นไธบๆŽฅๆ”ถcosๅ’Œsin past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, use_cache=False, attention_mask: Optional[torch.Tensor] = None): bsz, seq_len, _ = x.shape xq, xk, xv = self.q_proj(x), self.k_proj(x), self.v_proj(x) xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim) xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) cos, sin = position_embeddings xq, xk = apply_rotary_pos_emb(xq, xk, cos[:seq_len], sin[:seq_len]) # kv_cacheๅฎž็Žฐ if past_key_value is not None: xk = torch.cat([past_key_value[0], xk], dim=1) xv = torch.cat([past_key_value[1], xv], dim=1) past_kv = (xk, xv) if use_cache else None xq, xk, xv = ( xq.transpose(1, 2), repeat_kv(xk, self.n_rep).transpose(1, 2), repeat_kv(xv, self.n_rep).transpose(1, 2) ) if False and self.flash and seq_len != 1: dropout_p = self.dropout if self.training else 0.0 attn_mask = None if attention_mask is not None: attn_mask = attention_mask.view(bsz, 1, 1, -1).expand(bsz, self.n_local_heads, seq_len, -1) attn_mask = attn_mask.bool() if attention_mask is not None else None output = F.scaled_dot_product_attention(xq, xk, xv, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=True) else: scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim) scores = scores + torch.triu( torch.full((seq_len, seq_len), float("-inf"), device=scores.device), diagonal=1 ).unsqueeze(0).unsqueeze(0) # scores+mask if attention_mask is not None: extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) extended_attention_mask = (1.0 - extended_attention_mask) * -1e9 scores = scores + extended_attention_mask scores = F.softmax(scores.float(), dim=-1).type_as(xq) scores = self.attn_dropout(scores) output = scores @ xv output = output.transpose(1, 2).reshape(bsz, seq_len, -1) output = self.resid_dropout(self.o_proj(output)) return output, past_kv class FeedForward(nn.Module): def __init__(self, config: MiniMindConfig): super().__init__() if config.intermediate_size is None: intermediate_size = int(config.hidden_size * 8 / 3) config.intermediate_size = 64 * ((intermediate_size + 64 - 1) // 64) self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) self.dropout = nn.Dropout(config.dropout) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): return self.dropout(self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))) class MoEGate(nn.Module): def __init__(self, config: MiniMindConfig): super().__init__() self.config = config self.top_k = config.num_experts_per_tok self.n_routed_experts = config.n_routed_experts self.scoring_func = config.scoring_func self.alpha = config.aux_loss_alpha self.seq_aux = config.seq_aux self.norm_topk_prob = config.norm_topk_prob self.gating_dim = config.hidden_size self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim))) self.reset_parameters() def reset_parameters(self) -> None: import torch.nn.init as init init.kaiming_uniform_(self.weight, a=math.sqrt(5)) def forward(self, hidden_states): bsz, seq_len, h = hidden_states.shape hidden_states = hidden_states.view(-1, h) logits = F.linear(hidden_states, self.weight, None) if self.scoring_func == 'softmax': scores = logits.softmax(dim=-1) else: raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}') topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False) if self.top_k > 1 and self.norm_topk_prob: denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20 topk_weight = topk_weight / denominator if self.training and self.alpha > 0.0: scores_for_aux = scores aux_topk = self.top_k topk_idx_for_aux_loss = topk_idx.view(bsz, -1) if self.seq_aux: scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1) ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device) ce.scatter_add_(1, topk_idx_for_aux_loss, torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)).div_( seq_len * aux_topk / self.n_routed_experts) aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(dim=1).mean() * self.alpha else: mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts) ce = mask_ce.float().mean(0) Pi = scores_for_aux.mean(0) fi = ce * self.n_routed_experts aux_loss = (Pi * fi).sum() * self.alpha else: aux_loss = 0 return topk_idx, topk_weight, aux_loss class MOEFeedForward(nn.Module): def __init__(self, config: MiniMindConfig): super().__init__() self.config = config self.experts = nn.ModuleList([ FeedForward(config) for _ in range(config.n_routed_experts) ]) self.gate = MoEGate(config) if config.n_shared_experts > 0: self.shared_experts = nn.ModuleList([ FeedForward(config) for _ in range(config.n_shared_experts) ]) def forward(self, x): identity = x orig_shape = x.shape bsz, seq_len, _ = x.shape # ไฝฟ็”จ้—จๆŽงๆœบๅˆถ้€‰ๆ‹ฉไธ“ๅฎถ topk_idx, topk_weight, aux_loss = self.gate(x) x = x.view(-1, x.shape[-1]) flat_topk_idx = topk_idx.view(-1) if self.training: x = x.repeat_interleave(self.config.num_experts_per_tok, dim=0) y = torch.empty_like(x, dtype=torch.float16) for i, expert in enumerate(self.experts): y[flat_topk_idx == i] = expert(x[flat_topk_idx == i]).to(y.dtype) # ็กฎไฟ็ฑปๅž‹ไธ€่‡ด y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1) y = y.view(*orig_shape) else: y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape) if self.config.n_shared_experts > 0: for expert in self.shared_experts: y = y + expert(identity) self.aux_loss = aux_loss return y @torch.no_grad() def moe_infer(self, x, flat_expert_indices, flat_expert_weights): expert_cache = torch.zeros_like(x) idxs = flat_expert_indices.argsort() tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0) token_idxs = idxs // self.config.num_experts_per_tok # ๅฝ“tokens_per_expert = [6, 15, 20, 26]๏ผŒtokens_per_expert.shape[0]ๅณไธบไธ“ๅฎถๆ•ฐ้‡๏ผˆๆญคๆ—ถไธบ4๏ผ‰ # ไธ”token_idxs = [3, 7, 19, 21, 24, 25, 4, 5, 6, 10, 11, 12...] ๆ—ถ # ๆ„ๅ‘ณtoken_idxs[:6] -> [3, 7, 19, 21, 24, 25]่ฟ™6ไธชไฝ็ฝฎๅฑžไบŽไธ“ๅฎถ0ๅค„็†็š„token๏ผˆๆฏไธชtokenๆœ‰ๅฏ่ƒฝ่ขซๅคšไธชไธ“ๅฎถๅค„็†๏ผŒ่ฟ™ๅ–ๅ†ณไบŽnum_experts_per_tok๏ผ‰ # ๆŽฅไธ‹ๆฅ9ไธชไฝ็ฝฎtoken_idxs[6:15] -> [4, 5, 6, 10, 11, 12...]ๅฑžไบŽไธ“ๅฎถ1ๅค„็†็š„token...ไพๆญค็ฑปๆŽจ for i, end_idx in enumerate(tokens_per_expert): start_idx = 0 if i == 0 else tokens_per_expert[i - 1] if start_idx == end_idx: continue expert = self.experts[i] exp_token_idx = token_idxs[start_idx:end_idx] expert_tokens = x[exp_token_idx] expert_out = expert(expert_tokens).to(expert_cache.dtype) expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]]) expert_cache.scatter_add_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out) return expert_cache class MiniMindBlock(nn.Module): def __init__(self, layer_id: int, config: MiniMindConfig): super().__init__() self.num_attention_heads = config.num_attention_heads self.hidden_size = config.hidden_size self.head_dim = config.hidden_size // config.num_attention_heads self.self_attn = Attention(config) self.layer_id = layer_id self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.mlp = FeedForward(config) if not config.use_moe else MOEFeedForward(config) def forward(self, hidden_states, position_embeddings, past_key_value=None, use_cache=False, attention_mask=None): residual = hidden_states hidden_states, present_key_value = self.self_attn( self.input_layernorm(hidden_states), position_embeddings, past_key_value, use_cache, attention_mask ) hidden_states += residual hidden_states = hidden_states + self.mlp(self.post_attention_layernorm(hidden_states)) return hidden_states, present_key_value class MiniMindModel(nn.Module): def __init__(self, config: MiniMindConfig): super().__init__() self.config = config self.vocab_size, self.num_hidden_layers = config.vocab_size, config.num_hidden_layers self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) self.dropout = nn.Dropout(config.dropout) self.layers = nn.ModuleList([MiniMindBlock(l, config) for l in range(self.num_hidden_layers)]) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) freqs_cos, freqs_sin = precompute_freqs_cis(dim=config.hidden_size // config.num_attention_heads, end=config.max_position_embeddings, theta=config.rope_theta) self.register_buffer("freqs_cos", freqs_cos, persistent=False) self.register_buffer("freqs_sin", freqs_sin, persistent=False) def forward(self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None, use_cache: bool = False, **kwargs): batch_size, seq_length = input_ids.shape past_key_values = past_key_values or [None] * len(self.layers) start_pos = past_key_values[0][0].shape[1] if past_key_values[0] is not None else 0 hidden_states = self.dropout(self.embed_tokens(input_ids)) position_embeddings = ( self.freqs_cos[start_pos:start_pos + seq_length], self.freqs_sin[start_pos:start_pos + seq_length] ) presents = [] for layer_idx, (layer, past_key_value) in enumerate(zip(self.layers, past_key_values)): hidden_states, present = layer( hidden_states, position_embeddings, past_key_value=past_key_value, use_cache=use_cache, attention_mask=attention_mask ) presents.append(present) hidden_states = self.norm(hidden_states) aux_loss = sum( layer.mlp.aux_loss for layer in self.layers if isinstance(layer.mlp, MOEFeedForward) ) return hidden_states, presents, aux_loss class MiniMindForCausalLM(PreTrainedModel, GenerationMixin): config_class = MiniMindConfig def __init__(self, config: MiniMindConfig = None): self.config = config or MiniMindConfig() super().__init__(self.config) self.model = MiniMindModel(self.config) self.lm_head = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias=False) self.model.embed_tokens.weight = self.lm_head.weight self.OUT = CausalLMOutputWithPast() def forward(self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None, use_cache: bool = False, logits_to_keep: Union[int, torch.Tensor] = 0, **args): h, past_kvs, aux_loss = self.model( input_ids=input_ids, attention_mask=attention_mask, past_key_values=past_key_values, use_cache=use_cache, **args ) slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(h[:, slice_indices, :]) self.OUT.__setitem__('last_hidden_state', h) self.OUT.__setitem__('logits', logits) self.OUT.__setitem__('aux_loss', aux_loss) self.OUT.__setitem__('past_key_values', past_kvs) return self.OUT