|
|
|
|
|
|
|
|
|
from transformers import PretrainedConfig |
|
|
|
|
|
class MiniMindConfig(PretrainedConfig): |
|
model_type = "minimind" |
|
|
|
def __init__( |
|
self, |
|
dropout: float = 0.0, |
|
bos_token_id: int = 1, |
|
eos_token_id: int = 2, |
|
hidden_act: str = 'silu', |
|
hidden_size: int = 512, |
|
intermediate_size: int = None, |
|
max_position_embeddings: int = 32768, |
|
num_attention_heads: int = 8, |
|
num_hidden_layers: int = 8, |
|
num_key_value_heads: int = 2, |
|
vocab_size: int = 6400, |
|
rms_norm_eps: float = 1e-05, |
|
rope_theta: int = 1000000.0, |
|
flash_attn: bool = True, |
|
|
|
|
|
|
|
|
|
use_moe: bool = False, |
|
num_experts_per_tok: int = 2, |
|
n_routed_experts: int = 4, |
|
n_shared_experts: int = 1, |
|
scoring_func: str = 'softmax', |
|
aux_loss_alpha: float = 0.1, |
|
seq_aux: bool = True, |
|
norm_topk_prob: bool = True, |
|
**kwargs |
|
): |
|
super().__init__(**kwargs) |
|
self.dropout = dropout |
|
self.bos_token_id = bos_token_id |
|
self.eos_token_id = eos_token_id |
|
self.hidden_act = hidden_act |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.num_attention_heads = num_attention_heads |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_key_value_heads = num_key_value_heads |
|
self.vocab_size = vocab_size |
|
self.rms_norm_eps = rms_norm_eps |
|
self.rope_theta = rope_theta |
|
self.flash_attn = flash_attn |
|
|
|
|
|
|
|
|
|
self.use_moe = use_moe |
|
self.num_experts_per_tok = num_experts_per_tok |
|
self.n_routed_experts = n_routed_experts |
|
self.n_shared_experts = n_shared_experts |
|
self.scoring_func = scoring_func |
|
self.aux_loss_alpha = aux_loss_alpha |
|
self.seq_aux = seq_aux |
|
self.norm_topk_prob = norm_topk_prob |
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import torch |
|
from torch import nn |
|
from transformers.activations import ACT2FN |
|
from typing import Optional, Tuple, List, Union |
|
import torch.nn.functional as F |
|
from transformers import PreTrainedModel, GenerationMixin, PretrainedConfig |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
|
|
|
|
class RMSNorm(torch.nn.Module): |
|
def __init__(self, dim: int, eps: float = 1e-5): |
|
super().__init__() |
|
self.eps = eps |
|
self.weight = nn.Parameter(torch.ones(dim)) |
|
|
|
def _norm(self, x): |
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) |
|
|
|
def forward(self, x): |
|
return self.weight * self._norm(x.float()).type_as(x) |
|
|
|
|
|
def precompute_freqs_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6): |
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) |
|
t = torch.arange(end, device=freqs.device) |
|
freqs = torch.outer(t, freqs).float() |
|
freqs_cos = torch.cat([torch.cos(freqs), torch.cos(freqs)], dim=-1) |
|
freqs_sin = torch.cat([torch.sin(freqs), torch.sin(freqs)], dim=-1) |
|
return freqs_cos, freqs_sin |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
def rotate_half(x): |
|
return torch.cat((-x[..., x.shape[-1] // 2:], x[..., : x.shape[-1] // 2]), dim=-1) |
|
|
|
q_embed = (q * cos.unsqueeze(unsqueeze_dim)) + (rotate_half(q) * sin.unsqueeze(unsqueeze_dim)) |
|
k_embed = (k * cos.unsqueeze(unsqueeze_dim)) + (rotate_half(k) * sin.unsqueeze(unsqueeze_dim)) |
|
return q_embed, k_embed |
|
|
|
|
|
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)""" |
|
bs, slen, num_key_value_heads, head_dim = x.shape |
|
if n_rep == 1: |
|
return x |
|
return ( |
|
x[:, :, :, None, :] |
|
.expand(bs, slen, num_key_value_heads, n_rep, head_dim) |
|
.reshape(bs, slen, num_key_value_heads * n_rep, head_dim) |
|
) |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, args: MiniMindConfig): |
|
super().__init__() |
|
self.num_key_value_heads = args.num_attention_heads if args.num_key_value_heads is None else args.num_key_value_heads |
|
assert args.num_attention_heads % self.num_key_value_heads == 0 |
|
self.n_local_heads = args.num_attention_heads |
|
self.n_local_kv_heads = self.num_key_value_heads |
|
self.n_rep = self.n_local_heads // self.n_local_kv_heads |
|
self.head_dim = args.hidden_size // args.num_attention_heads |
|
self.q_proj = nn.Linear(args.hidden_size, args.num_attention_heads * self.head_dim, bias=False) |
|
self.k_proj = nn.Linear(args.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) |
|
self.v_proj = nn.Linear(args.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) |
|
self.o_proj = nn.Linear(args.num_attention_heads * self.head_dim, args.hidden_size, bias=False) |
|
self.attn_dropout = nn.Dropout(args.dropout) |
|
self.resid_dropout = nn.Dropout(args.dropout) |
|
self.dropout = args.dropout |
|
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn |
|
|
|
|
|
def forward(self, |
|
x: torch.Tensor, |
|
position_embeddings: Tuple[torch.Tensor, torch.Tensor], |
|
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
use_cache=False, |
|
attention_mask: Optional[torch.Tensor] = None): |
|
bsz, seq_len, _ = x.shape |
|
xq, xk, xv = self.q_proj(x), self.k_proj(x), self.v_proj(x) |
|
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim) |
|
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) |
|
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) |
|
|
|
cos, sin = position_embeddings |
|
xq, xk = apply_rotary_pos_emb(xq, xk, cos[:seq_len], sin[:seq_len]) |
|
|
|
|
|
if past_key_value is not None: |
|
xk = torch.cat([past_key_value[0], xk], dim=1) |
|
xv = torch.cat([past_key_value[1], xv], dim=1) |
|
past_kv = (xk, xv) if use_cache else None |
|
|
|
xq, xk, xv = ( |
|
xq.transpose(1, 2), |
|
repeat_kv(xk, self.n_rep).transpose(1, 2), |
|
repeat_kv(xv, self.n_rep).transpose(1, 2) |
|
) |
|
|
|
if False and self.flash and seq_len != 1: |
|
dropout_p = self.dropout if self.training else 0.0 |
|
attn_mask = None |
|
if attention_mask is not None: |
|
attn_mask = attention_mask.view(bsz, 1, 1, -1).expand(bsz, self.n_local_heads, seq_len, -1) |
|
attn_mask = attn_mask.bool() if attention_mask is not None else None |
|
|
|
output = F.scaled_dot_product_attention(xq, xk, xv, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=True) |
|
else: |
|
scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim) |
|
scores = scores + torch.triu( |
|
torch.full((seq_len, seq_len), float("-inf"), device=scores.device), |
|
diagonal=1 |
|
).unsqueeze(0).unsqueeze(0) |
|
|
|
if attention_mask is not None: |
|
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) |
|
extended_attention_mask = (1.0 - extended_attention_mask) * -1e9 |
|
scores = scores + extended_attention_mask |
|
|
|
scores = F.softmax(scores.float(), dim=-1).type_as(xq) |
|
scores = self.attn_dropout(scores) |
|
output = scores @ xv |
|
|
|
output = output.transpose(1, 2).reshape(bsz, seq_len, -1) |
|
output = self.resid_dropout(self.o_proj(output)) |
|
return output, past_kv |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, config: MiniMindConfig): |
|
super().__init__() |
|
if config.intermediate_size is None: |
|
intermediate_size = int(config.hidden_size * 8 / 3) |
|
config.intermediate_size = 64 * ((intermediate_size + 64 - 1) // 64) |
|
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) |
|
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) |
|
self.dropout = nn.Dropout(config.dropout) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, x): |
|
return self.dropout(self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))) |
|
|
|
|
|
class MoEGate(nn.Module): |
|
def __init__(self, config: MiniMindConfig): |
|
super().__init__() |
|
self.config = config |
|
self.top_k = config.num_experts_per_tok |
|
self.n_routed_experts = config.n_routed_experts |
|
|
|
self.scoring_func = config.scoring_func |
|
self.alpha = config.aux_loss_alpha |
|
self.seq_aux = config.seq_aux |
|
|
|
self.norm_topk_prob = config.norm_topk_prob |
|
self.gating_dim = config.hidden_size |
|
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim))) |
|
self.reset_parameters() |
|
|
|
def reset_parameters(self) -> None: |
|
import torch.nn.init as init |
|
init.kaiming_uniform_(self.weight, a=math.sqrt(5)) |
|
|
|
def forward(self, hidden_states): |
|
bsz, seq_len, h = hidden_states.shape |
|
hidden_states = hidden_states.view(-1, h) |
|
logits = F.linear(hidden_states, self.weight, None) |
|
if self.scoring_func == 'softmax': |
|
scores = logits.softmax(dim=-1) |
|
else: |
|
raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}') |
|
|
|
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False) |
|
|
|
if self.top_k > 1 and self.norm_topk_prob: |
|
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20 |
|
topk_weight = topk_weight / denominator |
|
|
|
if self.training and self.alpha > 0.0: |
|
scores_for_aux = scores |
|
aux_topk = self.top_k |
|
topk_idx_for_aux_loss = topk_idx.view(bsz, -1) |
|
if self.seq_aux: |
|
scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1) |
|
ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device) |
|
ce.scatter_add_(1, topk_idx_for_aux_loss, |
|
torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)).div_( |
|
seq_len * aux_topk / self.n_routed_experts) |
|
aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(dim=1).mean() * self.alpha |
|
else: |
|
mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts) |
|
ce = mask_ce.float().mean(0) |
|
Pi = scores_for_aux.mean(0) |
|
fi = ce * self.n_routed_experts |
|
aux_loss = (Pi * fi).sum() * self.alpha |
|
else: |
|
aux_loss = 0 |
|
return topk_idx, topk_weight, aux_loss |
|
|
|
|
|
class MOEFeedForward(nn.Module): |
|
def __init__(self, config: MiniMindConfig): |
|
super().__init__() |
|
self.config = config |
|
self.experts = nn.ModuleList([ |
|
FeedForward(config) |
|
for _ in range(config.n_routed_experts) |
|
]) |
|
self.gate = MoEGate(config) |
|
if config.n_shared_experts > 0: |
|
self.shared_experts = nn.ModuleList([ |
|
FeedForward(config) |
|
for _ in range(config.n_shared_experts) |
|
]) |
|
|
|
def forward(self, x): |
|
identity = x |
|
orig_shape = x.shape |
|
bsz, seq_len, _ = x.shape |
|
|
|
topk_idx, topk_weight, aux_loss = self.gate(x) |
|
x = x.view(-1, x.shape[-1]) |
|
flat_topk_idx = topk_idx.view(-1) |
|
if self.training: |
|
x = x.repeat_interleave(self.config.num_experts_per_tok, dim=0) |
|
y = torch.empty_like(x, dtype=torch.float16) |
|
for i, expert in enumerate(self.experts): |
|
y[flat_topk_idx == i] = expert(x[flat_topk_idx == i]).to(y.dtype) |
|
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1) |
|
y = y.view(*orig_shape) |
|
else: |
|
y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape) |
|
if self.config.n_shared_experts > 0: |
|
for expert in self.shared_experts: |
|
y = y + expert(identity) |
|
self.aux_loss = aux_loss |
|
return y |
|
|
|
@torch.no_grad() |
|
def moe_infer(self, x, flat_expert_indices, flat_expert_weights): |
|
expert_cache = torch.zeros_like(x) |
|
idxs = flat_expert_indices.argsort() |
|
tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0) |
|
token_idxs = idxs // self.config.num_experts_per_tok |
|
|
|
|
|
|
|
|
|
for i, end_idx in enumerate(tokens_per_expert): |
|
start_idx = 0 if i == 0 else tokens_per_expert[i - 1] |
|
if start_idx == end_idx: |
|
continue |
|
expert = self.experts[i] |
|
exp_token_idx = token_idxs[start_idx:end_idx] |
|
expert_tokens = x[exp_token_idx] |
|
expert_out = expert(expert_tokens).to(expert_cache.dtype) |
|
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]]) |
|
expert_cache.scatter_add_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out) |
|
|
|
return expert_cache |
|
|
|
|
|
class MiniMindBlock(nn.Module): |
|
def __init__(self, layer_id: int, config: MiniMindConfig): |
|
super().__init__() |
|
self.num_attention_heads = config.num_attention_heads |
|
self.hidden_size = config.hidden_size |
|
self.head_dim = config.hidden_size // config.num_attention_heads |
|
self.self_attn = Attention(config) |
|
|
|
self.layer_id = layer_id |
|
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.mlp = FeedForward(config) if not config.use_moe else MOEFeedForward(config) |
|
|
|
def forward(self, hidden_states, position_embeddings, past_key_value=None, use_cache=False, attention_mask=None): |
|
residual = hidden_states |
|
hidden_states, present_key_value = self.self_attn( |
|
self.input_layernorm(hidden_states), position_embeddings, |
|
past_key_value, use_cache, attention_mask |
|
) |
|
hidden_states += residual |
|
hidden_states = hidden_states + self.mlp(self.post_attention_layernorm(hidden_states)) |
|
return hidden_states, present_key_value |
|
|
|
|
|
class MiniMindModel(nn.Module): |
|
def __init__(self, config: MiniMindConfig): |
|
super().__init__() |
|
self.config = config |
|
self.vocab_size, self.num_hidden_layers = config.vocab_size, config.num_hidden_layers |
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) |
|
self.dropout = nn.Dropout(config.dropout) |
|
self.layers = nn.ModuleList([MiniMindBlock(l, config) for l in range(self.num_hidden_layers)]) |
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
freqs_cos, freqs_sin = precompute_freqs_cis(dim=config.hidden_size // config.num_attention_heads, |
|
end=config.max_position_embeddings, theta=config.rope_theta) |
|
self.register_buffer("freqs_cos", freqs_cos, persistent=False) |
|
self.register_buffer("freqs_sin", freqs_sin, persistent=False) |
|
|
|
def forward(self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None, |
|
use_cache: bool = False, |
|
**kwargs): |
|
batch_size, seq_length = input_ids.shape |
|
past_key_values = past_key_values or [None] * len(self.layers) |
|
start_pos = past_key_values[0][0].shape[1] if past_key_values[0] is not None else 0 |
|
|
|
hidden_states = self.dropout(self.embed_tokens(input_ids)) |
|
|
|
position_embeddings = ( |
|
self.freqs_cos[start_pos:start_pos + seq_length], |
|
self.freqs_sin[start_pos:start_pos + seq_length] |
|
) |
|
|
|
presents = [] |
|
for layer_idx, (layer, past_key_value) in enumerate(zip(self.layers, past_key_values)): |
|
hidden_states, present = layer( |
|
hidden_states, |
|
position_embeddings, |
|
past_key_value=past_key_value, |
|
use_cache=use_cache, |
|
attention_mask=attention_mask |
|
) |
|
presents.append(present) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
aux_loss = sum( |
|
layer.mlp.aux_loss |
|
for layer in self.layers |
|
if isinstance(layer.mlp, MOEFeedForward) |
|
) |
|
|
|
return hidden_states, presents, aux_loss |
|
|
|
|
|
class MiniMindForCausalLM(PreTrainedModel, GenerationMixin): |
|
config_class = MiniMindConfig |
|
|
|
def __init__(self, config: MiniMindConfig = None): |
|
self.config = config or MiniMindConfig() |
|
super().__init__(self.config) |
|
self.model = MiniMindModel(self.config) |
|
self.lm_head = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias=False) |
|
self.model.embed_tokens.weight = self.lm_head.weight |
|
self.OUT = CausalLMOutputWithPast() |
|
|
|
def forward(self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None, |
|
use_cache: bool = False, |
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
**args): |
|
h, past_kvs, aux_loss = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
**args |
|
) |
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep |
|
logits = self.lm_head(h[:, slice_indices, :]) |
|
self.OUT.__setitem__('last_hidden_state', h) |
|
self.OUT.__setitem__('logits', logits) |
|
self.OUT.__setitem__('aux_loss', aux_loss) |
|
self.OUT.__setitem__('past_key_values', past_kvs) |
|
return self.OUT |
|
|