numb3r3 commited on
Commit
a93850a
·
verified ·
1 Parent(s): f85995c

init commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ pipeline_tag: text-classification
4
+ tags:
5
+ - vidore
6
+ - reranker
7
+ - qwen2_vl
8
+ language:
9
+ - multilingual
10
+ base_model:
11
+ - Qwen/Qwen2-VL-2B-Instruct
12
+ inference: false
13
+ license: cc-by-nc-4.0
14
+ library_name: transformers
15
+ ---
16
+
17
+ <br><br>
18
+
19
+ <p align="center">
20
+ <img src="https://huggingface.co/datasets/jinaai/documentation-images/resolve/main/logo.webp" alt="Jina AI: Your Search Foundation, Supercharged!" width="150px">
21
+ </p>
22
+
23
+ <p align="center">
24
+ <b>Trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
25
+ </p>
26
+
27
+ # jina-reranker-v3
28
+
29
+ ## Intended Usage & Model Info
30
+
31
+ The **Jina Reranker v3** (`jina-reranker-v3`) is multi-lingual, and multi-modal model that has been fine-tuned for text and visual document reranking task, which is a crucial component in many information retrieval systems. It takes a query and a document pair as input and outputs a score indicating the relevance of the document to the query. The model is trained on a large dataset of query-document pairs and is capable of reranking documents in multiple languages with high accuracy.
32
+
33
+
34
+ # Usage
35
+
36
+ _This model repository is licenced for research and evaluation purposes under CC-BY-NC-4.0. For commercial usage, please refer to Jina AI's APIs, AWS Sagemaker or Azure Marketplace offerings. Please [contact us](https://jina.ai/contact-sales) for any further clarifications._
37
+ 1. The easiest way to use `jina-reranker-v3` is to call Jina AI's [Reranker API](https://jina.ai/reranker/).
38
+
39
+ ```bash
40
+ curl https://api.jina.ai/v1/rerank \
41
+ -H "Content-Type: application/json" \
42
+ -H "Authorization: Bearer YOUR_API_KEY" \
43
+ -d '{
44
+ "model": "jina-reranker-v3",
45
+ "query": "Organic skincare products for sensitive skin",
46
+ "documents": [
47
+ {"text": "Organic skincare for sensitive skin with aloe vera and chamomile."},
48
+ {"text": "New makeup trends focus on bold colors and innovative techniques"},
49
+ {"text": "Bio-Hautpflege für empfindliche Haut mit Aloe Vera und Kamille"},
50
+ {"text": "Neue Make-up-Trends setzen auf kräftige Farben und innovative Techniken"},
51
+ {"text": "Cuidado de la piel orgánico para piel sensible con aloe vera y manzanilla"},
52
+ {"text": "Las nuevas tendencias de maquillaje se centran en colores vivos y técnicas innovadoras"},
53
+ {"text": "针对敏感肌专门设计的天然有机护肤产品"},
54
+ {"text": "新的化妆趋势注重鲜艳的颜色和创新的技巧"},
55
+ {"text": "敏感肌のために特別に設計された天然有機スキンケア製品"},
56
+ {"text": "新しいメイクのトレンドは鮮やかな色と革新的な技術に焦点を当てています"}
57
+
58
+ ],
59
+ "top_n": 3
60
+ }'
61
+ ```
62
+
63
+ 2. You can also use the `transformers` library to interact with the model programmatically.
64
+
65
+ Before you start, install the `transformers` libraries:
66
+
67
+ ```bash
68
+ pip install transformers >= 4.47.3
69
+ ```
70
+
71
+ And then:
72
+ ```python
73
+ from transformers import AutoModel
74
+
75
+ model = AutoModel.from_pretrained(
76
+ 'jinaai/jina-reranker-v3',
77
+ torch_dtype="auto",
78
+ trust_remote_code=True,
79
+ )
80
+
81
+ model.to('cuda') # or 'cpu' if no GPU is available
82
+ model.eval()
83
+
84
+ # Example query and documents
85
+ query = "Organic skincare products for sensitive skin"
86
+ documents = [
87
+ "Organic skincare for sensitive skin with aloe vera and chamomile.",
88
+ "New makeup trends focus on bold colors and innovative techniques",
89
+ "Bio-Hautpflege für empfindliche Haut mit Aloe Vera und Kamille",
90
+ "Neue Make-up-Trends setzen auf kräftige Farben und innovative Techniken",
91
+ "Cuidado de la piel orgánico para piel sensible con aloe vera y manzanilla",
92
+ "Las nuevas tendencias de maquillaje se centran en colores vivos y técnicas innovadoras",
93
+ "针对敏感肌专门设计的天然有机护肤产品",
94
+ "新的化妆趋势注重鲜艳的颜色和创新的技巧",
95
+ "敏感肌のために特別に設計された天然有機スキンケア製品",
96
+ "新しいメイクのトレンドは鮮やかな色と革新的な技術に焦点を当てています",
97
+ ]
98
+
99
+ # construct sentence pairs
100
+ sentence_pairs = [[query, doc] for doc in documents]
101
+
102
+ scores = model.compute_score(sentence_pairs, max_length=1024)
103
+ ```
104
+
105
+ The scores will be a list of floats, where each float represents the relevance score of the corresponding document to the query. Higher scores indicate higher relevance.
106
+ For instance the returning scores in this case will be:
107
+ ```bash
108
+ [0.8311430811882019, 0.09401018172502518,
109
+ 0.6334102749824524, 0.08269733935594559,
110
+ 0.7620701193809509, 0.09947021305561066,
111
+ 0.9263036847114563, 0.05834583938121796,
112
+ 0.8418256044387817, 0.11124119907617569]
113
+ ```
added_tokens.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|box_end|>": 151649,
3
+ "<|box_start|>": 151648,
4
+ "<|endoftext|>": 151643,
5
+ "<|im_end|>": 151645,
6
+ "<|im_start|>": 151644,
7
+ "<|image_pad|>": 151655,
8
+ "<|object_ref_end|>": 151647,
9
+ "<|object_ref_start|>": 151646,
10
+ "<|quad_end|>": 151651,
11
+ "<|quad_start|>": 151650,
12
+ "<|video_pad|>": 151656,
13
+ "<|vision_end|>": 151653,
14
+ "<|vision_pad|>": 151654,
15
+ "<|vision_start|>": 151652
16
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "jinaai/jina-reranker-v3",
3
+ "architectures": ["JinaVLForRanking"],
4
+ "auto_map": {
5
+ "AutoModel": "modeling.JinaVLForRanking"
6
+ },
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 151643,
9
+ "eos_token_id": 151645,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 1536,
12
+ "image_token_id": 151655,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 8960,
15
+ "max_position_embeddings": 32768,
16
+ "max_window_layers": 28,
17
+ "model_type": "qwen2_vl",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 28,
20
+ "num_key_value_heads": 2,
21
+ "rms_norm_eps": 1e-6,
22
+ "rope_scaling": {
23
+ "mrope_section": [16, 24, 24],
24
+ "rope_type": "default",
25
+ "type": "default"
26
+ },
27
+ "rope_theta": 1000000.0,
28
+ "sliding_window": 32768,
29
+ "tie_word_embeddings": true,
30
+ "torch_dtype": "bfloat16",
31
+ "transformers_version": "4.47.1",
32
+ "use_cache": false,
33
+ "use_sliding_window": false,
34
+ "video_token_id": 151656,
35
+ "vision_config": {
36
+ "hidden_size": 1536,
37
+ "in_chans": 3,
38
+ "model_type": "qwen2_vl",
39
+ "spatial_patch_size": 14
40
+ },
41
+ "vision_end_token_id": 151653,
42
+ "vision_start_token_id": 151652,
43
+ "vision_token_id": 151654,
44
+ "vocab_size": 151936
45
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attn_implementation": "flash_attention_2",
3
+ "bos_token_id": 151643,
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 151645,
7
+ 151643
8
+ ],
9
+ "pad_token_id": 151643,
10
+ "temperature": 0.01,
11
+ "top_k": 1,
12
+ "top_p": 0.001,
13
+ "transformers_version": "4.47.1"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d0a7b5fd0966512850481633159f357450dc738665870c9ac4f2b2da252f5e2
3
+ size 4889523546
modeling.py ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ from typing import Optional, Tuple, List, Union, Any
4
+ from transformers import Qwen2VLForConditionalGeneration
5
+ import logging
6
+ import warnings
7
+ from PIL import Image
8
+ from transformers.image_utils import load_image
9
+
10
+ logger = logging.getLogger(__name__)
11
+
12
+
13
+ def load_images(images, lazy_load: bool = True):
14
+ # Disable PIL DecompositionBomb threshold for reading large images.
15
+ pil_max_px = Image.MAX_IMAGE_PIXELS
16
+ Image.MAX_IMAGE_PIXELS = None
17
+
18
+ images_batch = []
19
+ for image in images:
20
+ if isinstance(image, Image.Image):
21
+ images_batch.append(image)
22
+ else:
23
+ pil_image = load_image(image)
24
+ if lazy_load:
25
+ images_batch.append(pil_image)
26
+ else:
27
+ # avoid Too many open files error
28
+ images_batch.append(pil_image.copy())
29
+ pil_image.close()
30
+ Image.MAX_IMAGE_PIXELS = pil_max_px
31
+
32
+ return images_batch
33
+
34
+
35
+ def formatting_prompts_func(
36
+ query: str,
37
+ doc: str,
38
+ query_type: str = 'text',
39
+ doc_type: str = 'text',
40
+ prefix_str: str = '',
41
+ ) -> str:
42
+ """
43
+ Format prompts for different combinations of query and content types.
44
+
45
+ Args:
46
+ query: Query text or image path
47
+ doc: Content text or image path
48
+ query_type: Whether query is an image
49
+ doc_type: Whether content is an image
50
+ prefix_str: Optional prefix string to add
51
+ """
52
+ # Format query part
53
+ if query_type == 'image':
54
+ query_part = "**Query**:\n<|vision_start|><|image_pad|><|vision_end|>"
55
+ else:
56
+ query_part = f"**Query**:\n{query}"
57
+
58
+ # Format content part
59
+ if doc_type == 'image':
60
+ doc_part = "**Document**:\n<|vision_start|><|image_pad|><|vision_end|>"
61
+ else:
62
+ doc_part = f"**Document**:\n{doc}"
63
+
64
+ # Combine parts
65
+ prompt = doc_part + '\n' + query_part
66
+
67
+ # Add prefix if provided
68
+ if prefix_str:
69
+ prompt = prefix_str + '\n' + prompt
70
+
71
+ return prompt
72
+
73
+ class JinaVLForRanking(Qwen2VLForConditionalGeneration):
74
+ def __init__(self, config):
75
+ super().__init__(config)
76
+
77
+ self.padding_side = "left"
78
+ self.num_labels = 1 # config.num_labels
79
+
80
+ # hack the lm_head to do nothing, since we only want the hidden states
81
+ self.lm_head = nn.Identity()
82
+
83
+ # copy the idea from `Qwen2ForRewardModel` to have a MLP layer to get the final score
84
+ self.score = nn.Sequential(
85
+ nn.Linear(config.hidden_size, config.hidden_size),
86
+ nn.ReLU(),
87
+ nn.Linear(config.hidden_size, self.num_labels),
88
+ )
89
+
90
+ # Initialize weights and apply final processing
91
+ self.post_init()
92
+
93
+ self.score_token_id = 100
94
+
95
+ def forward(self, *args, **kwargs) -> torch.Tensor:
96
+ # Delete output_hidden_states from kwargs
97
+ kwargs.pop("output_hidden_states", None)
98
+ kwargs.pop("use_cache", None)
99
+ assert kwargs.pop("labels", None) is None, "labels should not be passed to forward()"
100
+
101
+ outputs = super().forward(
102
+ *args,
103
+ use_cache=False,
104
+ output_hidden_states=True,
105
+ **kwargs,
106
+ )
107
+
108
+ # get the hidden states of the last layer
109
+ hidden_states = outputs.hidden_states[-1]
110
+
111
+ # IMPORTANT: the padding token must be on the left side
112
+ # get the hidden states of the last token and apply the linear layer
113
+ pooled_logits = self.score(hidden_states[:, -1])
114
+
115
+ return pooled_logits.squeeze(-1)
116
+
117
+ @torch.no_grad()
118
+ def compute_score(
119
+ self,
120
+ pairs: Union[List[Tuple[str, str]], Tuple[str, str]],
121
+ batch_size: int = 8,
122
+ max_length: int = 8192,
123
+ max_query_length: int = 512,
124
+ max_doc_length: Optional[int] = None,
125
+ query_type: str = 'text',
126
+ doc_type: str = 'text',
127
+ show_progress: bool = False,
128
+ ) -> List[float]:
129
+
130
+ if not hasattr(self, "_processor"):
131
+ from transformers import AutoProcessor
132
+ self._processor = AutoProcessor.from_pretrained(self.name_or_path, trust_remote_code=True)
133
+
134
+ assert isinstance(pairs, list)
135
+
136
+ if isinstance(pairs[0], str):
137
+ pairs = [pairs]
138
+
139
+ max_length = max_length or self.config.max_length
140
+
141
+ if max_doc_length is None:
142
+ max_doc_length = max(max_length - max_query_length, max_query_length)
143
+
144
+ if max_doc_length < max_query_length:
145
+ warnings.warn(
146
+ f"max_doc_length={max_doc_length} should be greater than max_query_length={max_query_length}"
147
+ )
148
+
149
+ assert (
150
+ max_doc_length + max_query_length <= max_length
151
+ ), f"max_doc_length ({max_doc_length}) + max_query_length ({max_query_length}) should be less than max_length ({max_length})"
152
+
153
+ max_length = max_length - 1
154
+
155
+ all_scores = []
156
+
157
+ device = next(self.parameters()).device
158
+
159
+ batch_iter = range(0, len(pairs), batch_size)
160
+ if show_progress:
161
+ from tqdm import trange
162
+
163
+ batch_iter = trange(0, len(pairs), batch_size, desc="Computing scores")
164
+
165
+ for start_index in batch_iter:
166
+ mini_batch = pairs[start_index : start_index + batch_size]
167
+
168
+ batch_inputs = []
169
+ for q, d in mini_batch:
170
+ # TEMP FIX: Truncate long documents
171
+ if doc_type == 'text':
172
+ tokens = self._processor.tokenizer(d, truncation=True, max_length=max_doc_length)
173
+ if len(tokens['input_ids']) >= max_doc_length:
174
+ d = self._processor.tokenizer.decode(tokens['input_ids'])
175
+
176
+ batch_inputs.append(
177
+ formatting_prompts_func(
178
+ q, d, query_type=query_type, doc_type=doc_type
179
+ )
180
+ )
181
+
182
+ batch_images = None
183
+ if doc_type == 'image':
184
+ batch_images = load_images([d for (q, d) in mini_batch])
185
+ elif query_type == 'image':
186
+ batch_images = load_images([q for (q, d) in mini_batch])
187
+
188
+ batch = self._processor(
189
+ text=batch_inputs,
190
+ images=batch_images,
191
+ return_tensors="pt",
192
+ padding=True,
193
+ truncation=True,
194
+ max_length=max_length,
195
+ )
196
+
197
+ # append the reward token to the input_ids and attention_mask
198
+ batch_size = batch["input_ids"].size(0)
199
+ batch["input_ids"] = torch.cat(
200
+ [
201
+ batch["input_ids"],
202
+ torch.full((batch_size, 1), self.score_token_id, device=batch["input_ids"].device),
203
+ ],
204
+ dim=1,
205
+ )
206
+ batch["attention_mask"] = torch.cat(
207
+ [
208
+ batch["attention_mask"],
209
+ torch.ones((batch_size, 1), device=batch["attention_mask"].device),
210
+ ],
211
+ dim=1,
212
+ )
213
+ # move the batch to the correct device
214
+ batch = {k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in batch.items()}
215
+
216
+ scores = self.forward(**batch).view(-1).cpu().float().numpy().tolist()
217
+ all_scores.extend(scores)
218
+
219
+ if len(all_scores) == 1:
220
+ return all_scores[0]
221
+ return all_scores
preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 12845056,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "Qwen2VLProcessor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "max_pixels": 12845056,
26
+ "min_pixels": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:091aa7594dc2fcfbfa06b9e3c22a5f0562ac14f30375c13af7309407a0e67b8a
3
+ size 11420371
tokenizer_config.json ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<|object_ref_start|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "<|object_ref_end|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151648": {
45
+ "content": "<|box_start|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151649": {
53
+ "content": "<|box_end|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151650": {
61
+ "content": "<|quad_start|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "151651": {
69
+ "content": "<|quad_end|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "151652": {
77
+ "content": "<|vision_start|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "151653": {
85
+ "content": "<|vision_end|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "151654": {
93
+ "content": "<|vision_pad|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "151655": {
101
+ "content": "<|image_pad|>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "151656": {
109
+ "content": "<|video_pad|>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ }
116
+ },
117
+ "additional_special_tokens": [
118
+ "<|im_start|>",
119
+ "<|im_end|>",
120
+ "<|object_ref_start|>",
121
+ "<|object_ref_end|>",
122
+ "<|box_start|>",
123
+ "<|box_end|>",
124
+ "<|quad_start|>",
125
+ "<|quad_end|>",
126
+ "<|vision_start|>",
127
+ "<|vision_end|>",
128
+ "<|vision_pad|>",
129
+ "<|image_pad|>",
130
+ "<|video_pad|>"
131
+ ],
132
+ "bos_token": null,
133
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
134
+ "clean_up_tokenization_spaces": false,
135
+ "eos_token": "<|im_end|>",
136
+ "errors": "replace",
137
+ "extra_special_tokens": {},
138
+ "model_max_length": 32768,
139
+ "pad_token": "<|endoftext|>",
140
+ "padding_side": "left",
141
+ "processor_class": "Qwen2VLProcessor",
142
+ "split_special_tokens": false,
143
+ "tokenizer_class": "Qwen2Tokenizer",
144
+ "unk_token": null
145
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff