# Jina Embeddings V4 Model implementation was inspired by the ColPali codebase: # https://github.com/illuin-tech/colpali import os from dataclasses import dataclass from enum import Enum from functools import partial from io import BytesIO from typing import Any, Callable, ClassVar, Dict, List, Optional, Union, cast import numpy as np import requests import torch from huggingface_hub import snapshot_download from peft import LoraConfig, PeftModel from PIL import Image from torch import nn from torch.utils.data import DataLoader from tqdm import tqdm from transformers import BatchFeature from transformers.utils import is_flash_attn_2_available from .configuration_jina_embeddings_v4 import JinaEmbeddingsV4Config from .custom_lora_module import MultiAdapterLinear from .qwen2_5_vl import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLProcessor class PromptType(str, Enum): query = "query" passage = "passage" PREFIX_DICT = {"query": "Query", "passage": "Passage"} class JinaEmbeddingsV4Processor(Qwen2_5_VLProcessor): def __init__(self, *args, **kwargs) -> None: Qwen2_5_VLProcessor.__init__(self, *args, **kwargs) self.assistant_prefix_len = 58 self.text_max_length = 32768 def process_images( self, images: Union[List[Image.Image], List[List[Image.Image]]], ) -> BatchFeature: if isinstance(images[0], list): images = cast(List[List[Image.Image]], images) text_doc = [] for i in range(len(images)): conversation = [ {"role": "user", "content": [{"type": "image"}] * len(images[i])} ] template = self.apply_chat_template( conversation, add_generation_prompt=False ) text_doc.append(template[self.assistant_prefix_len :]) else: images = cast(List[Image.Image], images) text_doc = [ "<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe the image.<|im_end|>\n" ] * len(images) # The following code is a hack to make sure the scatter in DDP is done correctly when training on multiple GPUs batch_doc = self(text=text_doc, images=images, padding="longest", return_tensors="pt") # type: ignore # Separate pixel_values for each image offsets = batch_doc["image_grid_thw"][:, 1] * batch_doc["image_grid_thw"][:, 2] # Pad pixel_values to the same length to be able to make it into a tensor pixel_values = torch.split(batch_doc["pixel_values"], offsets.tolist()) max_length = max([len(pv) for pv in pixel_values]) pixel_values = [ torch.cat( [ pv, torch.zeros( (max_length - len(pv), pv.shape[1]), dtype=pv.dtype, device=pv.device, ), ] ) for pv in pixel_values ] batch_doc["pixel_values"] = torch.stack(pixel_values) return batch_doc def process_texts( self, texts: List[str], max_length: Optional[int] = None, prefix: Optional[str] = None, padding: Optional[str] = None, ) -> BatchFeature: max_length = ( self.text_max_length if max_length is None else min(max_length, self.text_max_length) ) padded_texts: List[str] = [] for text in texts: if prefix: text = f"{prefix}: {text}" padded_texts.append(text) text_batch = self( text=padded_texts, return_tensors="pt", padding=padding or "longest", max_length=max_length, truncation=True, ) return text_batch @dataclass class JinaEmbeddingsV4ModelOutput: """ Base class for the Hybrid Model outputs. Args: vlm_last_hidden_states (torch.Tensor, optional): Last hidden states of the VLM. single_vec_emb (torch.Tensor, optional): Single-vector embeddings. multi_vec_emb (torch.Tensor, optional): Multi-vector embeddings. """ vlm_last_hidden_states: Optional[torch.Tensor] = None single_vec_emb: Optional[torch.Tensor] = None multi_vec_emb: Optional[torch.Tensor] = None class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration): config_class = JinaEmbeddingsV4Config main_input_name: ClassVar[str] = "doc_input_ids" def __init__(self, config: JinaEmbeddingsV4Config): Qwen2_5_VLForConditionalGeneration.__init__(self, config) self._init_projection_layer(config) self.post_init() self.processor = JinaEmbeddingsV4Processor.from_pretrained( self.name_or_path, trust_remote_code=True, use_fast=True ) self.multi_vector_projector_dim = config.multi_vector_projector_dim self.verbosity = config.verbosity self._task = None @property def task(self) -> Optional[str]: """Get the current task set for the model.""" return self._task @task.setter def task(self, task: str): """ Set the task for the model. Args: task (str): The task name. Must be one of ['retrieval', 'text-matching', 'code'] """ if task not in self.config.task_names: raise ValueError( f"Invalid task: {task}. Must be one of {self.config.task_names}." ) self._task = task def get_last_hidden_states( self, task_label: Union[str, List[str]], input_ids: torch.LongTensor, attention_mask: torch.Tensor, **kwargs, ) -> torch.Tensor: if "pixel_values" in kwargs: offsets = kwargs["image_grid_thw"][:, 1] * kwargs["image_grid_thw"][:, 2] kwargs["pixel_values"] = torch.cat( [pv[:o] for pv, o in zip(kwargs["pixel_values"], offsets)], dim=0 ) position_ids, rope_deltas = self.model.get_rope_index( input_ids=input_ids, image_grid_thw=kwargs.get("image_grid_thw", None), attention_mask=attention_mask, ) kwargs["output_hidden_states"] = True outputs = super().forward( task_label=task_label, input_ids=input_ids, attention_mask=attention_mask, **kwargs, position_ids=position_ids, rope_deltas=rope_deltas, use_cache=False, ) hidden_states = outputs.hidden_states if not hidden_states: raise ValueError("Hidden states not found in model output") return hidden_states[-1] def _init_projection_layer(self, config) -> None: """ Initializes projection layers. """ self.config.multi_vector_projector_dim = config.multi_vector_projector_dim self.multi_vector_projector = nn.Linear( in_features=self.config.text_config.hidden_size, out_features=self.config.multi_vector_projector_dim, ) def get_single_vector_embeddings( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, input_ids: Optional[torch.LongTensor] = None, ) -> torch.Tensor: """ Get the single-vector embeddings from the hidden states. """ if self._input_has_image(input_ids[0]): # got document image img_start_positions = torch.where( input_ids == self.config.vision_start_token_id )[1] img_end_positions = torch.where( input_ids == self.config.vision_end_token_id )[1] batch_size, seq_len = input_ids.shape position_indices = torch.arange(seq_len, device=input_ids.device).expand( batch_size, -1 ) image_mask = (position_indices >= img_start_positions.unsqueeze(1)) & ( position_indices <= img_end_positions.unsqueeze(1) ) masked_hidden_states = hidden_states * image_mask.unsqueeze(-1) pooled_output = masked_hidden_states.sum(dim=1) / image_mask.sum( dim=1, keepdim=True ) else: # got query text pooled_output = torch.sum( hidden_states * attention_mask.unsqueeze(-1), dim=1 ) / torch.sum(attention_mask, dim=1, keepdim=True) return torch.nn.functional.normalize(pooled_output, dim=-1) def get_multi_vector_embeddings( self, task_label: Union[str, List[str]], hidden_states: torch.Tensor, attention_mask: torch.Tensor, ) -> torch.Tensor: """ Project the hidden states to multi-vector embeddings. """ multi_vec_emb = self.multi_vector_projector( hidden_states, task_label=task_label ) multi_vec_emb = torch.nn.functional.normalize(multi_vec_emb, dim=-1) return multi_vec_emb * attention_mask.unsqueeze(-1) def _input_has_image(self, input_ids): return self.config.vision_start_token_id in input_ids def forward( self, task_label: Union[str, List[str]], input_ids: torch.LongTensor, attention_mask: torch.Tensor, output_vlm_last_hidden_states: bool = False, **kwargs, ) -> JinaEmbeddingsV4ModelOutput: """ Forward pass through the model. Returns both single-vector and multi-vector embeddings. Args: input_ids (torch.Tensor): The input tokens tensor. attention_mask (torch.Tensor): The attention mask tensor. Returns: JinaEmbeddingsV4ModelOutput: vlm_last_hidden_states (torch.Tensor, optional): Last hidden states of the VLM. single_vec_emb (torch.Tensor, optional): Single-vector embeddings. multi_vec_emb (torch.Tensor, optional): Multi-vector embeddings. """ # Forward pass through the VLM hidden_states = self.get_last_hidden_states( input_ids=input_ids, attention_mask=attention_mask, task_label=task_label, **kwargs, ) # (batch_size, seq_length, hidden_size) # Compute the embeddings single_vec_emb = self.get_single_vector_embeddings( hidden_states=hidden_states, attention_mask=attention_mask, input_ids=input_ids, ) multi_vec_emb = self.get_multi_vector_embeddings( hidden_states=hidden_states, attention_mask=attention_mask, task_label=task_label, ) return JinaEmbeddingsV4ModelOutput( vlm_last_hidden_states=( hidden_states if output_vlm_last_hidden_states else None ), single_vec_emb=single_vec_emb, multi_vec_emb=multi_vec_emb, ) def _process_batches( self, data: List[Union[str, Image.Image]], task_label: Union[str, List[str]], processor_fn: Callable, desc: str, return_multivector: bool = False, return_numpy: bool = False, batch_size: int = 32, truncate_dim: Optional[int] = None, ) -> Union[np.ndarray, List[torch.Tensor]]: dataloader = DataLoader( dataset=data, batch_size=batch_size, shuffle=False, collate_fn=processor_fn, ) if return_multivector and len(data) > 1: assert ( not return_numpy ), "`return_numpy` is not supported when `return_multivector=True` and more than one data is encoded" results = [] self.eval() for batch in tqdm(dataloader, desc=desc, disable=self.verbosity == 0): with torch.no_grad(): batch = {k: v.to(self.device) for k, v in batch.items()} with torch.autocast( device_type=torch.device(self.device).type, dtype=torch.bfloat16 ): embeddings = self(**batch, task_label=task_label) if not return_multivector: embeddings = embeddings.single_vec_emb if truncate_dim is not None: embeddings = embeddings[:, :truncate_dim] embeddings = torch.nn.functional.normalize( embeddings, p=2, dim=-1 ) else: embeddings = embeddings.multi_vec_emb if return_multivector and not return_numpy: valid_tokens = batch["attention_mask"].bool() embeddings = [ emb[mask] for emb, mask in zip(embeddings, valid_tokens) ] results.append(embeddings) else: results.append( embeddings.cpu() if return_numpy else list(torch.unbind(embeddings)) ) if return_numpy: return np.concatenate([result.numpy() for result in results], axis=0) return [item for sublist in results for item in sublist] def _validate_encoding_params( self, truncate_dim: Optional[int] = None, prompt_name: Optional[str] = None, ) -> Dict[str, Any]: encode_kwargs = {} if prompt_name is not None: if prompt_name not in PREFIX_DICT: raise ValueError( f"Invalid prompt_name: {prompt_name}. Must be one of {list(PREFIX_DICT.keys())}." ) else: encode_kwargs["prefix"] = ( PREFIX_DICT[prompt_name] if self.task != "text-matching" else PREFIX_DICT["query"] ) truncate_dim = truncate_dim or self.config.truncate_dim if truncate_dim is not None and truncate_dim not in self.config.matryoshka_dims: raise ValueError( f"Invalid truncate_dim: {truncate_dim}. Must be one of {self.config.matryoshka_dims}." ) else: encode_kwargs["truncate_dim"] = truncate_dim return encode_kwargs def _validate_task(self, task: Optional[str] = None) -> str: if task is None: if self.task is None: raise ValueError( "Task must be specified before encoding data. You can set it either as a model property " "(e.g., model.task = 'retrieval') or pass it as an argument to the encode method." ) task = self.task else: if task not in self.config.task_names: raise ValueError( f"Invalid task: {task}. Must be one of {self.config.task_names}." ) return task def encode_text( self, texts: Union[str, List[str]], task: Optional[str] = None, max_length: int = 32768, batch_size: int = 8, return_multivector: bool = False, return_numpy: bool = False, truncate_dim: Optional[int] = None, prompt_name: Optional[str] = None, ) -> Union[List[torch.Tensor], torch.Tensor]: """ Encodes a list of texts into embeddings. Args: texts: text or list of text strings to encode max_length: Maximum token length for text processing batch_size: Number of texts to process at once return_multivector: Whether to return multi-vector embeddings instead of single-vector embeddings return_numpy: Whether to return numpy arrays instead of torch tensors truncate_dim: Dimension to truncate embeddings to (128, 256, 512, or 1024) prompt_name: Type of text being encoded ('query' or 'passage') Returns: List of text embeddings as tensors or numpy arrays when encoding multiple texts, or single text embedding as tensor when encoding a single text """ prompt_name = prompt_name or "query" encode_kwargs = self._validate_encoding_params( truncate_dim=truncate_dim, prompt_name=prompt_name ) task = self._validate_task(task) processor_fn = partial( self.processor.process_texts, max_length=max_length, prefix=encode_kwargs.pop("prefix"), ) return_list = isinstance(texts, list) # If return_multivector is True and encoding multiple texts, ignore return_numpy if return_multivector and return_list and len(texts) > 1: if return_numpy: print( "Warning: `return_numpy` is ignored when `return_multivector=True` and `len(texts) > 1`" ) return_numpy = False if isinstance(texts, str): texts = [texts] embeddings = self._process_batches( data=texts, processor_fn=processor_fn, desc="Encoding texts...", task_label=task, return_multivector=return_multivector, return_numpy=return_numpy, batch_size=batch_size, **encode_kwargs, ) return embeddings if return_list else embeddings[0] def _load_images_if_needed( self, images: List[Union[str, Image.Image]] ) -> List[Image.Image]: loaded_images = [] for image in images: if isinstance(image, str): if image.startswith("http"): response = requests.get(image) image = Image.open(BytesIO(response.content)).convert("RGB") else: image = Image.open(image).convert("RGB") loaded_images.append(image) return loaded_images def encode_image( self, images: Union[str, Image.Image, List[Union[str, Image.Image]]], task: Optional[str] = None, batch_size: int = 8, return_multivector: bool = False, return_numpy: bool = False, truncate_dim: Optional[int] = None, max_pixels: Optional[int] = None, ) -> Union[List[torch.Tensor], torch.Tensor]: """ Encodes a list of images or a single image into embedding(s). Args: images: image(s) to encode, can be PIL Image(s), URL(s), or local file path(s) batch_size: Number of images to process at once return_multivector: Whether to return multi-vector embeddings instead of single-vector embeddings return_numpy: Whether to return numpy arrays instead of torch tensors. If `return_multivector` is `True` and more than one image is encoded, this parameter is ignored. truncate_dim: Dimension to truncate embeddings to (128, 256, 512, or 1024) max_pixels: Maximum number of pixels to process per image Returns: List of image embeddings as tensors or numpy arrays when encoding multiple images, or single image embedding as tensor when encoding a single image """ if max_pixels: default_max_pixels = self.processor.image_processor.max_pixels self.processor.image_processor.max_pixels = ( max_pixels # change during encoding ) encode_kwargs = self._validate_encoding_params(truncate_dim=truncate_dim) task = self._validate_task(task) return_list = isinstance(images, list) # If return_multivector is True and encoding multiple images, ignore return_numpy if return_multivector and return_list and len(images) > 1: if return_numpy: print( "Warning: `return_numpy` is ignored when `return_multivector=True` and `len(images) > 1`" ) return_numpy = False # Convert single image to list if isinstance(images, (str, Image.Image)): images = [images] images = self._load_images_if_needed(images) embeddings = self._process_batches( data=images, processor_fn=self.processor.process_images, desc="Encoding images...", task_label=task, batch_size=batch_size, return_multivector=return_multivector, return_numpy=return_numpy, **encode_kwargs, ) if max_pixels: self.processor.image_processor.max_pixels = default_max_pixels return embeddings if return_list else embeddings[0] @classmethod def from_pretrained( cls, pretrained_model_name_or_path, *args, **kwargs, ): """ Loads a pretrained model and configures it with the appropriate task adapter (`retrieval` by default). """ if "torch_dtype" not in kwargs: kwargs["torch_dtype"] = "auto" kwargs["key_mapping"] = super()._checkpoint_conversion_mapping if not is_flash_attn_2_available(): kwargs["attn_implementation"] = "sdpa" base_model = super().from_pretrained( pretrained_model_name_or_path, *args, **kwargs ) # Configure adapter directory if os.path.isdir(base_model.name_or_path): adapter_dir = os.path.join(base_model.name_or_path, "adapters") else: adapter_cache_path = snapshot_download( repo_id=base_model.name_or_path, allow_patterns=["adapters/*"] ) adapter_dir = os.path.join(adapter_cache_path, "adapters") lora_config = LoraConfig.from_pretrained(adapter_dir) lora_config._custom_modules = { torch.nn.modules.linear.Linear: partial( MultiAdapterLinear, task_names=base_model.config.task_names, ) } peft_model = PeftModel.from_pretrained( model=base_model, model_id=adapter_dir, config=lora_config, ) def task_getter(self): return self.model.task def task_setter(self, value): self.model.task = value peft_model.__class__.task = property(task_getter, task_setter) return peft_model