---
license: cc-by-nc-4.0
tags:
- vidore
- colpali
- multimodal-embedding
- multilingual-embedding
- Text-to-Visual Document (T→VD) retrieval
- feature-extraction
- sentence-similarity
- mteb
- sentence-transformers
language:
- multilingual
inference: false
library_name: transformers
pipeline_tag: visual-document-retrieval
---
The embedding model trained by Jina AI.
# Jina Embeddings v4: Universal Embeddings for Multimodal Multilingual Retrieval
## Quick Start
[Blog](https://jina.ai/news/jina-embeddings-v4-universal-embeddings-for-multimodal-multilingual-retrieval) | [Technical Report](https://arxiv.org/abs/2506.18902) | [API](https://jina.ai/embeddings)
## Intended Usage & Model Info
`jina-embeddings-v4` is a universal embedding model for multimodal and multilingual retrieval.
The model is specially designed for complex document retrieval, including visually rich documents with charts, tables, and illustrations.
Built on [Qwen/Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct), `jina-embeddings-v4` features:
- **Unified embeddings** for text, images, and visual documents, supporting both dense (single-vector) and late-interaction (multi-vector) retrieval.
- **Multilingual support** (30+ languages) and compatibility with a wide range of domains, including technical and visually complex documents.
- **Task-specific adapters** for retrieval, text matching, and code-related tasks, which can be selected at inference time.
- **Flexible embedding size**: dense embeddings are 2048 dimensions by default but can be truncated to as low as 128 with minimal performance loss.
Summary of features:
| Feature | Jina Embeddings V4 |
|------------|------------|
| Base Model | Qwen2.5-VL-3B-Instruct |
| Supported Tasks | `retrieval`, `text-matching`, `code` |
| Model DType | BFloat 16 |
| Max Sequence Length | 32768 |
| Single-Vector Dimension | 2048 |
| Multi-Vector Dimension | 128 |
| Matryoshka dimensions | 128, 256, 512, 1024, 2048 |
| Pooling Strategy | Mean pooling |
| Attention Mechanism | FlashAttention2 |
## Training & Evaluation
Please refer to our [technical report of jina-embeddings-v4](https://arxiv.org/abs/2506.18902) for training details and benchmarks.
## Usage
Requirements
The following Python packages are required:
- `transformers>=4.52.0`
- `torch>=2.6.0`
- `peft>=0.15.2`
- `torchvision`
- `pillow`
### Optional / Recommended
- **flash-attention**: Installing [flash-attention](https://github.com/Dao-AILab/flash-attention) is recommended for improved inference speed and efficiency, but not mandatory.
- **sentence-transformers**: If you want to use the model via the `sentence-transformers` interface, install this package as well.
via Jina AI Embeddings API
```bash
curl https://api.jina.ai/v1/embeddings \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $JINA_AI_API_TOKEN" \
-d @- <
via transformers
```python
# !pip install transformers>=4.52.0 torch>=2.6.0 peft>=0.15.2 torchvision pillow
# !pip install
from transformers import AutoModel
import torch
# Initialize the model
model = AutoModel.from_pretrained("jinaai/jina-embeddings-v4", trust_remote_code=True, torch_dtype=torch.float16)
model.to("cuda")
# ========================
# 1. Retrieval Task
# ========================
# Configure truncate_dim, max_length (for texts), max_pixels (for images), vector_type, batch_size in the encode function if needed
# Encode query
query_embeddings = model.encode_text(
texts=["Overview of climate change impacts on coastal cities"],
task="retrieval",
prompt_name="query",
)
# Encode passage (text)
passage_embeddings = model.encode_text(
texts=[
"Climate change has led to rising sea levels, increased frequency of extreme weather events..."
],
task="retrieval",
prompt_name="passage",
)
# Encode image/document
image_embeddings = model.encode_image(
images=["https://i.ibb.co/nQNGqL0/beach1.jpg"],
task="retrieval",
)
# ========================
# 2. Text Matching Task
# ========================
texts = [
"غروب جميل على الشاطئ", # Arabic
"海滩上美丽的日落", # Chinese
"Un beau coucher de soleil sur la plage", # French
"Ein wunderschöner Sonnenuntergang am Strand", # German
"Ένα όμορφο ηλιοβασίλεμα πάνω από την παραλία", # Greek
"समुद्र तट पर एक खूबसूरत सूर्यास्त", # Hindi
"Un bellissimo tramonto sulla spiaggia", # Italian
"浜辺に沈む美しい夕日", # Japanese
"해변 위로 아름다운 일몰", # Korean
]
text_embeddings = model.encode_text(texts=texts, task="text-matching")
# ========================
# 3. Code Understanding Task
# ========================
# Encode query
query_embedding = model.encode_text(
texts=["Find a function that prints a greeting message to the console"],
task="code",
prompt_name="query",
)
# Encode code
code_embeddings = model.encode_text(
texts=["def hello_world():\n print('Hello, World!')"],
task="code",
prompt_name="passage",
)
# ========================
# 4. Use multivectors
# ========================
multivector_embeddings = model.encode_text(
texts=texts,
task="retrieval",
prompt_name="query",
return_multivector=True,
)
images = ["https://i.ibb.co/nQNGqL0/beach1.jpg", "https://i.ibb.co/r5w8hG8/beach2.jpg"]
multivector_image_embeddings = model.encode_image(
images=images,
task="retrieval",
return_multivector=True,
)
```
via sentence-transformers
```python
from sentence_transformers import SentenceTransformer
# Initialize the model
model = SentenceTransformer("jinaai/jina-embeddings-v4", trust_remote_code=True)
# ========================
# 1. Retrieval Task
# ========================
# Encode query
query_embeddings = model.encode(
sentences=["Overview of climate change impacts on coastal cities"],
task="retrieval",
prompt_name="query",
)
print(f"query_embeddings.shape = {query_embeddings.shape}")
# Encode passage (text)
passage_embeddings = model.encode(
sentences=[
"Climate change has led to rising sea levels, increased frequency of extreme weather events..."
],
task="retrieval",
prompt_name="passage",
)
print(f"passage_embeddings.shape = {passage_embeddings.shape}")
# Encode image/document
image_embeddings = model.encode(
sentences=["https://i.ibb.co/nQNGqL0/beach1.jpg"],
task="retrieval",
)
print(f"image_embeddings.shape = {image_embeddings.shape}")
# ========================
# 2. Text Matching Task
# ========================
texts = [
"غروب جميل على الشاطئ", # Arabic
"海滩上美丽的日落", # Chinese
"Un beau coucher de soleil sur la plage", # French
"Ein wunderschöner Sonnenuntergang am Strand", # German
"Ένα όμορφο ηλιοβασίλεμα πάνω από την παραλία", # Greek
"समुद्र तट पर एक खूबसूरत सूर्यास्त", # Hindi
"Un bellissimo tramonto sulla spiaggia", # Italian
"浜辺に沈む美しい夕日", # Japanese
"해변 위로 아름다운 일몰", # Korean
]
text_embeddings = model.encode(sentences=texts, task="text-matching")
# ========================
# 3. Code Understanding Task
# ========================
# Encode query
query_embeddings = model.encode(
sentences=["Find a function that prints a greeting message to the console"],
task="code",
prompt_name="query",
)
# Encode code
code_embeddings = model.encode(
sentences=["def hello_world():\n print('Hello, World!')"],
task="code",
prompt_name="passage",
)
# ========================
# 4. Use multivectors
# ========================
# If you want to use multi-vector embeddings, please use the Hugging Face model directly.
```
via vLLM
We provide separate model versions for each task (`retrieval`, `text-matching`, `code`) where specific adapter is merged into the base `Qwen2.5-VL` weights.
This modification enables native compatibility with vLLM.
Instructions and usage examples for each task are available in their respective directories:
- [jina-embeddings-v4-vllm-retrieval](https://huggingface.co/jinaai/jina-embeddings-v4-vllm-retrieval)
- [jina-embeddings-v4-vllm-text-matching](https://huggingface.co/jinaai/jina-embeddings-v4-vllm-text-matching)
- [jina-embeddings-v4-vllm-code](https://huggingface.co/jinaai/jina-embeddings-v4-vllm-code)
Please refer to the directory that matches your task for more details.
## Jina-VDR
Alongside `jina-embeddings-v4`, we’re releasing [Jina VDR](https://github.com/jina-ai/jina-vdr), a multilingual, multi-domain benchmark for visual document retrieval. The task collection can be viewed [here](https://huggingface.co/collections/jinaai/jinavdr-visual-document-retrieval-684831c022c53b21c313b449), and evaluation instructions can be found [here](https://github.com/jina-ai/jina-vdr).
## License
This model is licensed to download and run under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/deed.en). It is available for commercial use via the [Jina Embeddings API](https://jina.ai/embeddings/), [AWS](https://longdogechallenge.com/), [Azure](https://longdogechallenge.com/), and [GCP](https://longdogechallenge.com/). To download for commercial use, please [contact us](https://jina.ai/contact-sales).
## Contact
Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.
## Citation
If you find `jina-embeddings-v4` useful in your research, please cite the following paper:
```
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
title={jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
author={Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Sedigheh Eslami and Scott Martens and Bo Wang and Nan Wang and Han Xiao},
year={2025},
eprint={2506.18902},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2506.18902},
}
```