Create custom_st.py
Browse files- custom_st.py +219 -0
custom_st.py
ADDED
|
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Dict, Tuple, Union, Any, Optional
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import json
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
from torch import nn
|
| 8 |
+
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
| 9 |
+
from transformers.utils import is_flash_attn_2_available
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
INSTRUCTION_CONFIG = {
|
| 13 |
+
"nl2code": {
|
| 14 |
+
"query": "Find the most relevant code snippet given the following query:\n",
|
| 15 |
+
"passage": "Candidate code snippet:\n"
|
| 16 |
+
},
|
| 17 |
+
"qa": {
|
| 18 |
+
"query": "Find the most relevant answer given the following question:\n",
|
| 19 |
+
"passage": "Candidate answer:\n"
|
| 20 |
+
},
|
| 21 |
+
"code2code": {
|
| 22 |
+
"query": "Find an equivalent code snippet given the following code snippet:\n",
|
| 23 |
+
"passage": "Candidate code snippet:\n"
|
| 24 |
+
},
|
| 25 |
+
"code2nl": {
|
| 26 |
+
"query": "Find the most relevant comment given the following code snippet:\n",
|
| 27 |
+
"passage": "Candidate comment:\n"
|
| 28 |
+
},
|
| 29 |
+
"code2completion": {
|
| 30 |
+
"query": "Find the most relevant completion given the following start of code snippet:\n",
|
| 31 |
+
"passage": "Candidate completion:\n"
|
| 32 |
+
}
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def batch(iterable, n=1):
|
| 37 |
+
items = len(iterable)
|
| 38 |
+
for ndx in range(0, items, n):
|
| 39 |
+
yield iterable[ndx : min(ndx + n, items)]
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def last_token_pooling(model_output, attention_mask):
|
| 43 |
+
token_embeddings = model_output[0]
|
| 44 |
+
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
|
| 45 |
+
if left_padding:
|
| 46 |
+
return token_embeddings[:, -1]
|
| 47 |
+
else:
|
| 48 |
+
sequence_lengths = attention_mask.sum(dim=1) - 1
|
| 49 |
+
batch_size = token_embeddings.shape[0]
|
| 50 |
+
return token_embeddings[torch.arange(batch_size, device=token_embeddings.device), sequence_lengths].float()
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
class Transformer(nn.Module):
|
| 54 |
+
def __init__(
|
| 55 |
+
self,
|
| 56 |
+
model_name_or_path: str,
|
| 57 |
+
max_seq_length: int = None,
|
| 58 |
+
model_args: Dict[str, Any] = None,
|
| 59 |
+
tokenizer_args: Dict[str, Any] = None,
|
| 60 |
+
config_args: Dict[str, Any] = None,
|
| 61 |
+
cache_dir: str = None,
|
| 62 |
+
do_lower_case: bool = False,
|
| 63 |
+
tokenizer_name_or_path: str = None,
|
| 64 |
+
**kwargs,
|
| 65 |
+
) -> None:
|
| 66 |
+
super().__init__()
|
| 67 |
+
self.config_keys = ["max_seq_length", "do_lower_case"]
|
| 68 |
+
self.do_lower_case = do_lower_case
|
| 69 |
+
if model_args is None:
|
| 70 |
+
model_args = {}
|
| 71 |
+
if tokenizer_args is None:
|
| 72 |
+
tokenizer_args = {}
|
| 73 |
+
if config_args is None:
|
| 74 |
+
config_args = {}
|
| 75 |
+
|
| 76 |
+
self.config = AutoConfig.from_pretrained(model_name_or_path, **config_args, cache_dir=cache_dir)
|
| 77 |
+
|
| 78 |
+
self.task_names = self.config.task_names
|
| 79 |
+
|
| 80 |
+
self.default_task = model_args.pop('default_task', None)
|
| 81 |
+
|
| 82 |
+
model_args["attn_implementation"] = "flash_attention_2" if is_flash_attn_2_available() else "sdpa"
|
| 83 |
+
|
| 84 |
+
self.auto_model = AutoModel.from_pretrained(model_name_or_path, config=self.config, cache_dir=cache_dir, **model_args)
|
| 85 |
+
|
| 86 |
+
if max_seq_length is not None and "model_max_length" not in tokenizer_args:
|
| 87 |
+
tokenizer_args["model_max_length"] = max_seq_length
|
| 88 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 89 |
+
tokenizer_name_or_path if tokenizer_name_or_path is not None else model_name_or_path,
|
| 90 |
+
cache_dir=cache_dir,
|
| 91 |
+
**tokenizer_args,
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
# No max_seq_length set. Try to infer from model
|
| 95 |
+
if max_seq_length is None:
|
| 96 |
+
if (
|
| 97 |
+
hasattr(self.auto_model, "config")
|
| 98 |
+
and hasattr(self.auto_model.config, "max_position_embeddings")
|
| 99 |
+
and hasattr(self.tokenizer, "model_max_length")
|
| 100 |
+
):
|
| 101 |
+
max_seq_length = min(self.auto_model.config.max_position_embeddings, self.tokenizer.model_max_length)
|
| 102 |
+
|
| 103 |
+
self.max_seq_length = max_seq_length
|
| 104 |
+
|
| 105 |
+
if tokenizer_name_or_path is not None:
|
| 106 |
+
self.auto_model.config.tokenizer_class = self.tokenizer.__class__.__name__
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
@property
|
| 110 |
+
def default_task(self):
|
| 111 |
+
return self._default_task
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
@default_task.setter
|
| 115 |
+
def default_task(self, task: Union[None, str]):
|
| 116 |
+
self._validate_task(task)
|
| 117 |
+
self._default_task = task
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def _validate_task(self, task: str):
|
| 121 |
+
if task and task not in self.task_names:
|
| 122 |
+
raise ValueError(
|
| 123 |
+
f"Unsupported task '{task}'. "
|
| 124 |
+
f"Supported tasks are: {', '.join(self.config.task_names)}."
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def forward(
|
| 129 |
+
self,
|
| 130 |
+
features: Dict[str, torch.Tensor],
|
| 131 |
+
task: Optional[str] = None
|
| 132 |
+
) -> Dict[str, torch.Tensor]:
|
| 133 |
+
"""
|
| 134 |
+
Forward pass through the model.
|
| 135 |
+
"""
|
| 136 |
+
features.pop('prompt_length', None)
|
| 137 |
+
output_states = self.auto_model.forward(
|
| 138 |
+
**features,
|
| 139 |
+
output_attentions=False,
|
| 140 |
+
return_dict=True
|
| 141 |
+
)
|
| 142 |
+
output_tokens = output_states[0]
|
| 143 |
+
features.update({"token_embeddings": output_tokens, "attention_mask": features["attention_mask"]})
|
| 144 |
+
return features
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def get_word_embedding_dimension(self) -> int:
|
| 148 |
+
return self.auto_model.config.hidden_size
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def tokenize(
|
| 152 |
+
self,
|
| 153 |
+
texts: Union[List[str], List[dict], List[Tuple[str, str]]],
|
| 154 |
+
padding: Union[str, bool] = True
|
| 155 |
+
) -> Dict[str, torch.Tensor]:
|
| 156 |
+
"""Tokenizes a text and maps tokens to token-ids"""
|
| 157 |
+
output = {}
|
| 158 |
+
if isinstance(texts[0], str):
|
| 159 |
+
to_tokenize = [texts]
|
| 160 |
+
elif isinstance(texts[0], dict):
|
| 161 |
+
to_tokenize = []
|
| 162 |
+
output["text_keys"] = []
|
| 163 |
+
for lookup in texts:
|
| 164 |
+
text_key, text = next(iter(lookup.items()))
|
| 165 |
+
to_tokenize.append(text)
|
| 166 |
+
output["text_keys"].append(text_key)
|
| 167 |
+
to_tokenize = [to_tokenize]
|
| 168 |
+
else:
|
| 169 |
+
batch1, batch2 = [], []
|
| 170 |
+
for text_tuple in texts:
|
| 171 |
+
batch1.append(text_tuple[0])
|
| 172 |
+
batch2.append(text_tuple[1])
|
| 173 |
+
to_tokenize = [batch1, batch2]
|
| 174 |
+
|
| 175 |
+
# strip
|
| 176 |
+
to_tokenize = [[str(s).strip() for s in col] for col in to_tokenize]
|
| 177 |
+
|
| 178 |
+
# Lowercase
|
| 179 |
+
if self.do_lower_case:
|
| 180 |
+
to_tokenize = [[s.lower() for s in col] for col in to_tokenize]
|
| 181 |
+
|
| 182 |
+
output.update(
|
| 183 |
+
self.tokenizer(
|
| 184 |
+
*to_tokenize,
|
| 185 |
+
padding=padding,
|
| 186 |
+
truncation=True,
|
| 187 |
+
return_tensors="pt",
|
| 188 |
+
max_length=self.max_seq_length,
|
| 189 |
+
)
|
| 190 |
+
)
|
| 191 |
+
return output
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def get_config_dict(self) -> Dict[str, Any]:
|
| 195 |
+
return {key: self.__dict__[key] for key in self.config_keys}
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def save(self, output_path: str, safe_serialization: bool = True) -> None:
|
| 199 |
+
self.auto_model.save_pretrained(output_path, safe_serialization=safe_serialization)
|
| 200 |
+
self.tokenizer.save_pretrained(output_path)
|
| 201 |
+
|
| 202 |
+
with open(os.path.join(output_path, "sentence_transformer_config.json"), "w") as fOut:
|
| 203 |
+
json.dump(self.get_config_dict(), fOut, indent=2)
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
@classmethod
|
| 207 |
+
def load(cls, input_path: str) -> "Transformer":
|
| 208 |
+
config_name = "sentence_transformer_config.json"
|
| 209 |
+
stransformer_config_path = os.path.join(input_path, config_name)
|
| 210 |
+
with open(stransformer_config_path) as fIn:
|
| 211 |
+
config = json.load(fIn)
|
| 212 |
+
# Don't allow configs to set trust_remote_code
|
| 213 |
+
if "model_args" in config and "trust_remote_code" in config["model_args"]:
|
| 214 |
+
config["model_args"].pop("trust_remote_code")
|
| 215 |
+
if "tokenizer_args" in config and "trust_remote_code" in config["tokenizer_args"]:
|
| 216 |
+
config["tokenizer_args"].pop("trust_remote_code")
|
| 217 |
+
if "config_args" in config and "trust_remote_code" in config["config_args"]:
|
| 218 |
+
config["config_args"].pop("trust_remote_code")
|
| 219 |
+
return cls(model_name_or_path=input_path, **config)
|