File size: 9,377 Bytes
5752653
160a336
5752653
 
 
 
 
 
 
 
160a336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5752653
 
 
 
 
 
 
1d44aa7
160a336
 
 
 
4facfce
 
 
 
5752653
160a336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5752653
 
4facfce
 
 
160a336
 
5752653
 
4facfce
 
 
160a336
4facfce
160a336
4facfce
 
160a336
4facfce
 
160a336
 
 
4facfce
 
 
160a336
4facfce
160a336
4facfce
 
 
160a336
 
 
 
 
 
 
 
 
 
 
 
 
4facfce
 
160a336
4facfce
 
 
160a336
4facfce
160a336
 
 
 
 
 
 
 
4facfce
 
160a336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4facfce
 
 
 
160a336
4facfce
160a336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4facfce
 
160a336
4facfce
 
160a336
 
 
4facfce
160a336
4facfce
160a336
 
 
 
4facfce
 
160a336
 
 
 
 
 
 
 
 
 
4facfce
 
160a336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d44aa7
160a336
 
 
 
 
 
 
4facfce
5752653
160a336
5752653
 
160a336
 
 
 
 
 
0adb5e2
160a336
 
5752653
160a336
5752653
160a336
5752653
160a336
5752653
160a336
5752653
 
160a336
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
---
license: apache-2.0
language:
- en
library_name: transformers
pipeline_tag: token-classification
tags:
- biology
- chemistry
- medical
- cancer
- carcinogenesis
- biomedical
- ner
- oncology
datasets:
- jimnoneill/CarD-T-NER
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: CarD-T
  results:
  - task:
      type: token-classification
      name: Named Entity Recognition
    dataset:
      name: CarD-T-NER
      type: jimnoneill/CarD-T-NER
    metrics:
    - type: precision
      value: 0.894
    - type: recall
      value: 0.857
    - type: f1
      value: 0.875
---
# CarD-T: Carcinogen Detection via Transformers

## Overview
CarD-T (Carcinogen Detection via Transformers) is a novel text analytics approach that combines transformer-based machine learning with probabilistic statistical analysis to efficiently nominate carcinogens from scientific texts. This model is designed to address the challenges faced by current systems in managing the burgeoning biomedical literature related to carcinogen identification and classification.

## Model Details
* **Architecture**: Based on Bio-ELECTRA, a 335 million parameter language model (sultan/BioM-ELECTRA-Large-SQuAD2)
* **Training Data**: [CarD-T-NER dataset](https://huggingface.co/datasets/jimnoneill/CarD-T-NER) containing 19,975 annotated examples from PubMed abstracts (2000-2024)
  * Training set: 11,985 examples
  * Test set: 7,990 examples
* **Task**: Named Entity Recognition (NER) for carcinogen identification using BIO tagging
* **Performance**:
   * Precision: 0.894
   * Recall: 0.857
   * F1 Score: 0.875

## Named Entity Labels

The model recognizes 4 entity types using BIO (Beginning-Inside-Outside) tagging scheme, resulting in 9 total labels:

| Label ID | Label | Description |
|----------|-------|-------------|
| 0 | O | Outside any entity |
| 1 | B-carcinogen | Beginning of carcinogen entity |
| 2 | I-carcinogen | Inside carcinogen entity |
| 3 | B-negative | Beginning of negative/exculpatory evidence |
| 4 | I-negative | Inside negative evidence |
| 5 | B-cancertype | Beginning of cancer type/metadata |
| 6 | I-cancertype | Inside cancer type/metadata |
| 7 | B-antineoplastic | Beginning of anti-cancer agent |
| 8 | I-antineoplastic | Inside anti-cancer agent |

### Entity Type Descriptions:
* **carcinogen**: Substances or agents implicated in carcinogenesis
* **negative**: Exculpating evidence for potential carcinogenic entities
* **cancertype**: Metadata including organism (human/animal/cell), cancer type, and affected organs
* **antineoplastic**: Chemotherapy drugs and cancer-protective agents

## Use Cases
* Streamlining toxicogenomic literature reviews
* Identifying potential carcinogens for further investigation
* Augmenting existing carcinogen databases with emerging candidates
* Extracting structured information from cancer research literature
* Supporting evidence-based oncology research

## Limitations
* Identifies potential candidates, not confirmed carcinogens
* Analysis limited to abstract-level information
* May be influenced by publication trends and research focus shifts
* Requires validation by domain experts for clinical applications

## Installation

```bash
pip install transformers torch datasets
```

## Usage

### Basic Usage

```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
import torch

# Load model and tokenizer
model_name = "jimnoneill/CarD-T"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)

# Define label mappings
id2label = {
    0: "O",
    1: "B-carcinogen",
    2: "I-carcinogen",
    3: "B-negative",
    4: "I-negative",
    5: "B-cancertype",
    6: "I-cancertype",
    7: "B-antineoplastic",
    8: "I-antineoplastic"
}
```

### Named Entity Recognition Pipeline

```python
def predict_entities(text):
    # Tokenize input
    inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
    
    # Get predictions
    with torch.no_grad():
        outputs = model(**inputs)
        predictions = outputs.logits.argmax(dim=2)
    
    # Convert tokens and predictions to entities
    tokens = tokenizer.convert_ids_to_tokens(inputs.input_ids[0])
    
    entities = []
    current_entity = None
    current_tokens = []
    
    for token, pred_id in zip(tokens, predictions[0]):
        pred_label = id2label[pred_id.item()]
        
        if pred_label == "O":
            if current_entity:
                entities.append({
                    "entity": current_entity,
                    "text": tokenizer.convert_tokens_to_string(current_tokens)
                })
                current_entity = None
                current_tokens = []
        elif pred_label.startswith("B-"):
            if current_entity:
                entities.append({
                    "entity": current_entity,
                    "text": tokenizer.convert_tokens_to_string(current_tokens)
                })
            current_entity = pred_label[2:]
            current_tokens = [token]
        elif pred_label.startswith("I-") and current_entity:
            current_tokens.append(token)
    
    # Don't forget the last entity
    if current_entity:
        entities.append({
            "entity": current_entity,
            "text": tokenizer.convert_tokens_to_string(current_tokens)
        })
    
    return entities

# Example usage
text = "Benzene exposure has been linked to acute myeloid leukemia, while vitamin D shows antineoplastic properties."
entities = predict_entities(text)
for entity in entities:
    print(f"{entity['entity']}: {entity['text']}")
```

### Using with Hugging Face Pipeline

```python
from transformers import pipeline

# Create NER pipeline
ner_pipeline = pipeline(
    "token-classification",
    model=model_name,
    aggregation_strategy="simple"
)

# Analyze text
text = "Studies show asbestos causes mesothelioma in humans, but aspirin may have protective effects."
results = ner_pipeline(text)

# Display results
for entity in results:
    print(f"{entity['entity_group']}: {entity['word']} (confidence: {entity['score']:.3f})")
```

### Processing Scientific Abstracts

```python
def analyze_abstract(abstract):
    """Analyze a scientific abstract for cancer-related entities."""
    entities = predict_entities(abstract)
    
    # Organize by entity type
    results = {
        "carcinogens": [],
        "protective_agents": [],
        "cancer_types": [],
        "negative_findings": []
    }
    
    for entity in entities:
        if entity['entity'] == "carcinogen":
            results["carcinogens"].append(entity['text'])
        elif entity['entity'] == "antineoplastic":
            results["protective_agents"].append(entity['text'])
        elif entity['entity'] == "cancertype":
            results["cancer_types"].append(entity['text'])
        elif entity['entity'] == "negative":
            results["negative_findings"].append(entity['text'])
    
    return results

# Example with a scientific abstract
abstract = """
Recent studies in male rats exposed to compound X showed increased incidence of 
hepatocellular carcinoma. However, concurrent administration of resveratrol 
demonstrated significant protective effects against liver tumor development. 
No carcinogenic activity was observed in female mice under similar conditions.
"""

analysis = analyze_abstract(abstract)
print("Analysis Results:")
for category, items in analysis.items():
    if items:
        print(f"\n{category.replace('_', ' ').title()}:")
        for item in items:
            print(f"  - {item}")
```

## Training Configuration

The model was fine-tuned using the following configuration:

```python
from transformers import TrainingArguments

training_args = TrainingArguments(
    output_dir="./card-t-model",
    learning_rate=2e-5,
    per_device_train_batch_size=16,
    per_device_eval_batch_size=16,
    num_train_epochs=5,
    weight_decay=0.01,
    evaluation_strategy="epoch",
    save_strategy="epoch",
    load_best_model_at_end=True,
    metric_for_best_model="f1",
    push_to_hub=True,
)
```


If you use this model in your research, please cite:

```bibtex
@article{oneill2024cardt,
  title={CarD-T: Interpreting Carcinomic Lexicon via Transformers},
  author={O'Neill, Jamey and Reddy, G.A. and Dhillon, N. and Tripathi, O. and Alexandrov, L. and Katira, P.},
  journal={MedRxiv},
  year={2024},
  doi={10.1101/2024.08.13.24311948}
}
```

## License

This model is released under the Apache License 2.0, matching the license of the training dataset.

## Acknowledgments

We thank the biomedical research community for making their findings publicly available through PubMed, enabling the creation of this model. Special thanks to the Bio-ELECTRA team for the base model architecture.

## Contact

For questions, feedback, or collaborations:
- **Author**: Jamey O'Neill
- **Email**: [email protected]
- **Hugging Face**: [@jimnoneill](https://huggingface.co/jimnoneill)
- **Dataset**: [CarD-T-NER](https://huggingface.co/datasets/jimnoneill/CarD-T-NER)

## Disclaimer

This model is intended for research purposes only. It should not be used as a sole source for medical decisions or clinical diagnoses. Always consult with qualified healthcare professionals and validate findings through appropriate experimental methods.