Add model files
Browse files- README.md +160 -3
- config.json +108 -0
- tokenizer.py +952 -0
- xtts-v2.safetensors +3 -0
- xtts2_config.py +228 -0
- xtts2_modeling.py +1070 -0
README.md
CHANGED
@@ -1,3 +1,160 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model:
|
4 |
+
- coqui/XTTS-v2
|
5 |
+
---
|
6 |
+
# Auralis 🌌
|
7 |
+
|
8 |
+
## Model Details 🛠️
|
9 |
+
|
10 |
+
**Model Name:** Auralis
|
11 |
+
|
12 |
+
**Model Architecture:** Based on [Coqui XTTS-v2](https://huggingface.co/coqui/XTTS-v2)
|
13 |
+
|
14 |
+
**License:**
|
15 |
+
- license: Apache 2.0
|
16 |
+
- base_model: XTTS-v2 Components [Coqui AI License](https://coqui.ai/cpml)
|
17 |
+
|
18 |
+
**Language Support:** English, Spanish, French, German, Italian, Portuguese, Polish, Turkish, Russian, Dutch, Czech, Arabic, Chinese (Simplified), Hungarian, Korean, Japanese, Hindi
|
19 |
+
|
20 |
+
**Developed by:** [AstraMind.ai](https://www.astramind.ai)
|
21 |
+
|
22 |
+
**GitHub:** [AstraMind AI](https://github.com/astramind-ai/Auralis/tree/main)
|
23 |
+
|
24 |
+
**Primary Use Case:** Text-to-Speech (TTS) generation for real-world applications, including books, dialogues, and multilingual tasks.
|
25 |
+
|
26 |
+
---
|
27 |
+
|
28 |
+
## Model Description 🚀
|
29 |
+
|
30 |
+
Auralis transforms text into natural, high-quality speech with exceptional speed and scalability. It is powered by [Coqui XTTS-v2](https://huggingface.co/coqui/XTTS-v2) and optimized for both consumer-grade and high-performance GPUs. Auralis is designed to meet real-world needs like long-text processing, voice cloning, and concurrent request handling.
|
31 |
+
|
32 |
+
### Key Features:
|
33 |
+
- **Warp-Speed Processing:** Generate speech for an entire novel (e.g., Harry Potter) in ~10 minutes.
|
34 |
+
- **Hardware Friendly:** Requires <10GB VRAM on a single NVIDIA RTX 3090.
|
35 |
+
- **Scalable:** Handles multiple requests simultaneously.
|
36 |
+
- **Streaming:** Seamlessly processes long texts in a streaming format.
|
37 |
+
- **Custom Voices:** Enables voice cloning from short reference audio.
|
38 |
+
|
39 |
+
---
|
40 |
+
|
41 |
+
## Quick Start ⭐
|
42 |
+
|
43 |
+
```python
|
44 |
+
from auralis import TTS, TTSRequest
|
45 |
+
|
46 |
+
# Initialize the model
|
47 |
+
tts = TTS().from_pretrained("AstraMindAI/xtts2-gpt")
|
48 |
+
|
49 |
+
# Create a TTS request
|
50 |
+
request = TTSRequest(
|
51 |
+
text="Hello Earth! This is Auralis speaking.",
|
52 |
+
speaker_files=["reference.wav"]
|
53 |
+
)
|
54 |
+
|
55 |
+
# Generate speech
|
56 |
+
output = tts.generate_speech(request)
|
57 |
+
output.save("output.wav")
|
58 |
+
```
|
59 |
+
|
60 |
+
---
|
61 |
+
|
62 |
+
## Ebook Generation 📚
|
63 |
+
|
64 |
+
Auralis converting ebooks into audio formats at lightning speed. For Python script, check out [ebook_audio_generator.py](https://github.com/astramind-ai/Auralis/blob/main/examples/vocalize_a_ebook.py).
|
65 |
+
|
66 |
+
```python
|
67 |
+
def process_book(chapter_file: str, speaker_file: str):
|
68 |
+
# Read chapter
|
69 |
+
with open(chapter_file, 'r') as f:
|
70 |
+
chapter = f.read()
|
71 |
+
|
72 |
+
# You can pass the whole book, auralis will take care of splitting
|
73 |
+
|
74 |
+
request = TTSRequest(
|
75 |
+
text=chapter,
|
76 |
+
speaker_files=[speaker_file],
|
77 |
+
audio_config=AudioPreprocessingConfig(
|
78 |
+
enhance_speech=True,
|
79 |
+
normalize=True
|
80 |
+
)
|
81 |
+
)
|
82 |
+
|
83 |
+
output = tts.generate_speech(request)
|
84 |
+
|
85 |
+
output.play()
|
86 |
+
output.save("chapter_output.wav")
|
87 |
+
|
88 |
+
# Example usage
|
89 |
+
process_book("chapter1.txt", "reference_voice.wav")
|
90 |
+
```
|
91 |
+
|
92 |
+
---
|
93 |
+
|
94 |
+
## Intended Use 🌟
|
95 |
+
|
96 |
+
Auralis is designed for:
|
97 |
+
- **Content Creators:** Generate audiobooks, podcasts, or voiceovers.
|
98 |
+
- **Developers:** Integrate TTS into applications via a simple Python API.
|
99 |
+
- **Accessibility**: Providing audio versions of digital content for people with visual or reading difficulties.
|
100 |
+
- **Multilingual Scenarios:** Convert text to speech in multiple supported languages.
|
101 |
+
|
102 |
+
---
|
103 |
+
|
104 |
+
## Performance 📊
|
105 |
+
|
106 |
+
**Benchmarks on NVIDIA RTX 3090:**
|
107 |
+
- Short phrases (<100 characters): ~1 second
|
108 |
+
- Medium texts (<1,000 characters): ~5-10 seconds
|
109 |
+
- Full books (~100,000 characters): ~10 minutes
|
110 |
+
|
111 |
+
**Memory Usage:**
|
112 |
+
- Base VRAM: ~4GB
|
113 |
+
- Peak VRAM: ~10GB
|
114 |
+
|
115 |
+
---
|
116 |
+
|
117 |
+
## Model Features 🛸
|
118 |
+
|
119 |
+
1. **Speed & Efficiency:**
|
120 |
+
- Smart batching for rapid processing of long texts.
|
121 |
+
- Memory-optimized for consumer GPUs.
|
122 |
+
|
123 |
+
2. **Easy Integration:**
|
124 |
+
- Python API with support for synchronous and asynchronous workflows.
|
125 |
+
- Streaming mode for continuous playback during generation.
|
126 |
+
|
127 |
+
3. **Audio Quality Enhancements:**
|
128 |
+
- Background noise reduction.
|
129 |
+
- Voice clarity and volume normalization.
|
130 |
+
- Customizable audio preprocessing.
|
131 |
+
|
132 |
+
4. **Multilingual Support:**
|
133 |
+
- Automatic language detection.
|
134 |
+
- High-quality speech in 15+ languages.
|
135 |
+
|
136 |
+
5. **Customization:**
|
137 |
+
- Voice cloning using short reference clips.
|
138 |
+
- Adjustable parameters for tone, pacing, and language.
|
139 |
+
|
140 |
+
---
|
141 |
+
|
142 |
+
## Limitations & Ethical Considerations ⚠️
|
143 |
+
|
144 |
+
- **Voice Cloning Risks:** Auralis supports voice cloning, which may raise ethical concerns about misuse. Use responsibly and ensure proper consent.
|
145 |
+
- **Accent Limitations:** While robust for many languages, accents and intonations may vary based on the input.
|
146 |
+
|
147 |
+
---
|
148 |
+
|
149 |
+
## Citation 📜
|
150 |
+
|
151 |
+
If you use Auralis in your research or projects, please cite:
|
152 |
+
|
153 |
+
```bibtex
|
154 |
+
@misc{auralis2024,
|
155 |
+
author = {AstraMind AI},
|
156 |
+
title = {Auralis: High-Performance Text-to-Speech Engine},
|
157 |
+
year = {2024},
|
158 |
+
url = {https://huggingface.co/AstraMindAI/auralis}
|
159 |
+
}
|
160 |
+
```
|
config.json
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_type": "xtts",
|
3 |
+
"architectures": [
|
4 |
+
"XttsGPT"
|
5 |
+
],
|
6 |
+
"audio_config": {
|
7 |
+
"fmax": 8000,
|
8 |
+
"fmin": 0,
|
9 |
+
"hop_length": 256,
|
10 |
+
"mel_channels": 80,
|
11 |
+
"mel_norms_file": null,
|
12 |
+
"n_fft": 1024,
|
13 |
+
"output_sample_rate": 24000,
|
14 |
+
"power": 1.0,
|
15 |
+
"sample_rate": 22050,
|
16 |
+
"win_length": 1024
|
17 |
+
},
|
18 |
+
"d_vector_dim": 512,
|
19 |
+
"decoder_input_dim": 1024,
|
20 |
+
"num_chars": 255,
|
21 |
+
"duration_const": 102400,
|
22 |
+
"output_hop_length": 256,
|
23 |
+
"input_sample_rate": 22050,
|
24 |
+
"output_sample_rate": 24000,
|
25 |
+
"gpt": {
|
26 |
+
"model_type": "xtts_gpt"
|
27 |
+
},
|
28 |
+
"gpt_config": {
|
29 |
+
"model_type": "xtts_gpt",
|
30 |
+
"architectures": [
|
31 |
+
"XttsGPT"
|
32 |
+
],
|
33 |
+
"vocab_size": 7544,
|
34 |
+
"hidden_size": 1024,
|
35 |
+
"num_hidden_layers": 30,
|
36 |
+
"num_attention_heads": 16,
|
37 |
+
"n_inner": 4096,
|
38 |
+
"number_text_tokens": 7544,
|
39 |
+
"num_audio_tokens": 1026,
|
40 |
+
"max_audio_tokens": 605,
|
41 |
+
"start_audio_token": 1024,
|
42 |
+
"stop_audio_token": 1025,
|
43 |
+
"max_text_tokens": 402,
|
44 |
+
"max_prompt_tokens": 70,
|
45 |
+
"activation_function": "gelu_new",
|
46 |
+
"attn_pdrop": 0.1,
|
47 |
+
"layer_norm_epsilon": 1e-05,
|
48 |
+
"initializer_range": 0.02,
|
49 |
+
"use_masking_gt_prompt_approach": true,
|
50 |
+
"use_perceiver_resampler": true,
|
51 |
+
"kv_cache": true,
|
52 |
+
"enable_redaction": false,
|
53 |
+
"reorder_and_upcast_attn": false,
|
54 |
+
"scale_attn_by_inverse_layer_idx": false,
|
55 |
+
"auto_map": {
|
56 |
+
"AutoConfig": "AstraMindAI/xtts2-gpt--gpt_config.XTTSGPTConfig",
|
57 |
+
"AutoModelForCausalLM": "AstraMindAI/xtts2-gpt--xtts2_gpt_modeling.XttsGPT",
|
58 |
+
"AutoTokenizer": "AstraMindAI/xtts2-gpt--tokenizer.XTTSTokenizerFast"
|
59 |
+
},
|
60 |
+
"languages": [
|
61 |
+
"en",
|
62 |
+
"es",
|
63 |
+
"fr",
|
64 |
+
"de",
|
65 |
+
"it",
|
66 |
+
"pt",
|
67 |
+
"pl",
|
68 |
+
"tr",
|
69 |
+
"ru",
|
70 |
+
"nl",
|
71 |
+
"cs",
|
72 |
+
"ar",
|
73 |
+
"zh-cn",
|
74 |
+
"hu",
|
75 |
+
"ko",
|
76 |
+
"ja",
|
77 |
+
"vi"
|
78 |
+
]
|
79 |
+
},
|
80 |
+
"gpt_code_stride_len": 1024,
|
81 |
+
"cond_d_vector_in_each_upsampling_layer": true,
|
82 |
+
"auto_map": {
|
83 |
+
"AutoConfig": "AstraMindAI/xtts2--xtts2_config.XTTSConfig",
|
84 |
+
"AutoModelForCausalLM": "AstraMindAI/xtts2--xtts2_modeling.Xtts",
|
85 |
+
"AutoTokenizer": "AstraMindAI/xtts2--tokenizer.XTTSTokenizerFast"
|
86 |
+
},
|
87 |
+
"languages": [
|
88 |
+
"en",
|
89 |
+
"es",
|
90 |
+
"fr",
|
91 |
+
"de",
|
92 |
+
"it",
|
93 |
+
"pt",
|
94 |
+
"pl",
|
95 |
+
"tr",
|
96 |
+
"ru",
|
97 |
+
"nl",
|
98 |
+
"cs",
|
99 |
+
"ar",
|
100 |
+
"zh-cn",
|
101 |
+
"hu",
|
102 |
+
"ko",
|
103 |
+
"ja",
|
104 |
+
"vi"
|
105 |
+
],
|
106 |
+
"tokenizer_file": "",
|
107 |
+
"transformers_version": "4.46.0"
|
108 |
+
}
|
tokenizer.py
ADDED
@@ -0,0 +1,952 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from typing import List, Optional, Union, Dict, Any
|
3 |
+
from functools import cached_property
|
4 |
+
|
5 |
+
import pypinyin
|
6 |
+
import torch
|
7 |
+
from hangul_romanize import Transliter
|
8 |
+
from hangul_romanize.rule import academic
|
9 |
+
from num2words import num2words
|
10 |
+
from spacy.lang.ar import Arabic
|
11 |
+
from spacy.lang.en import English
|
12 |
+
from spacy.lang.es import Spanish
|
13 |
+
from spacy.lang.ja import Japanese
|
14 |
+
from spacy.lang.zh import Chinese
|
15 |
+
from spacy.lang.vi import Vietnamese
|
16 |
+
from transformers import PreTrainedTokenizerFast, BatchEncoding
|
17 |
+
from transformers.tokenization_utils_base import TruncationStrategy, PaddingStrategy
|
18 |
+
from tokenizers import Tokenizer
|
19 |
+
from tokenizers.pre_tokenizers import WhitespaceSplit
|
20 |
+
from tokenizers.processors import TemplateProcessing
|
21 |
+
|
22 |
+
from auralis.models.xttsv2.components.tts.layers.xtts.zh_num2words import TextNorm as zh_num2words
|
23 |
+
|
24 |
+
import cutlet
|
25 |
+
|
26 |
+
def get_spacy_lang(lang):
|
27 |
+
if lang == "zh":
|
28 |
+
return Chinese()
|
29 |
+
elif lang == "ja":
|
30 |
+
return Japanese()
|
31 |
+
elif lang == "ar":
|
32 |
+
return Arabic()
|
33 |
+
elif lang == "es":
|
34 |
+
return Spanish()
|
35 |
+
elif lang == "vi":
|
36 |
+
return Vietnamese()
|
37 |
+
else:
|
38 |
+
# For most languages, English does the job
|
39 |
+
return English()
|
40 |
+
|
41 |
+
|
42 |
+
def find_best_split_point(text: str, target_pos: int, window_size: int = 30) -> int:
|
43 |
+
"""
|
44 |
+
Find best split point near target position considering punctuation and language markers.
|
45 |
+
added for better sentence splitting in TTS.
|
46 |
+
"""
|
47 |
+
# Define split markers by priority
|
48 |
+
markers = [
|
49 |
+
# Strong breaks (longest pause)
|
50 |
+
(r'[.!?؟။။။]+[\s]*', 1.0), # Periods, exclamation, question (multi-script)
|
51 |
+
(r'[\n\r]+\s*[\n\r]+', 1.0), # Multiple newlines
|
52 |
+
(r'[:|;;:;][\s]*', 0.9), # Colons, semicolons (multi-script)
|
53 |
+
|
54 |
+
# Medium breaks
|
55 |
+
(r'[,,،、][\s]*', 0.8), # Commas (multi-script)
|
56 |
+
(r'[)}\])】』»›》\s]+', 0.7), # Closing brackets/parentheses
|
57 |
+
(r'[-—−]+[\s]*', 0.7), # Dashes
|
58 |
+
|
59 |
+
# Weak breaks
|
60 |
+
(r'\s+[&+=/\s]+\s+', 0.6), # Special characters with spaces
|
61 |
+
(r'[\s]+', 0.5), # Any whitespace as last resort
|
62 |
+
]
|
63 |
+
|
64 |
+
# Calculate window boundaries
|
65 |
+
start = max(0, target_pos - window_size)
|
66 |
+
end = min(len(text), target_pos + window_size)
|
67 |
+
window = text[start:end]
|
68 |
+
|
69 |
+
best_pos = target_pos
|
70 |
+
best_score = 0
|
71 |
+
|
72 |
+
for pattern, priority in markers:
|
73 |
+
matches = list(re.finditer(pattern, window))
|
74 |
+
for match in matches:
|
75 |
+
# Calculate position score based on distance from target
|
76 |
+
pos = start + match.end()
|
77 |
+
distance = abs(pos - target_pos)
|
78 |
+
distance_score = 1 - (distance / (window_size * 2))
|
79 |
+
|
80 |
+
# Combine priority and position scores
|
81 |
+
score = priority * distance_score
|
82 |
+
|
83 |
+
if score > best_score:
|
84 |
+
best_score = score
|
85 |
+
best_pos = pos
|
86 |
+
|
87 |
+
return best_pos
|
88 |
+
|
89 |
+
|
90 |
+
def split_sentence(text: str, lang: str, text_split_length: int = 250) -> List[str]:
|
91 |
+
"""
|
92 |
+
Enhanced sentence splitting with language awareness and optimal breakpoints.
|
93 |
+
|
94 |
+
Args:
|
95 |
+
text: Input text to split
|
96 |
+
lang: Language code
|
97 |
+
text_split_length: Target length for splits
|
98 |
+
|
99 |
+
Returns:
|
100 |
+
List of text splits optimized for TTS
|
101 |
+
"""
|
102 |
+
text = text.strip()
|
103 |
+
if len(text) <= text_split_length:
|
104 |
+
return [text]
|
105 |
+
|
106 |
+
nlp = get_spacy_lang(lang)
|
107 |
+
if "sentencizer" not in nlp.pipe_names:
|
108 |
+
nlp.add_pipe("sentencizer")
|
109 |
+
|
110 |
+
# Get base sentences using spaCy
|
111 |
+
doc = nlp(text)
|
112 |
+
sentences = list(doc.sents)
|
113 |
+
|
114 |
+
splits = []
|
115 |
+
current_split = []
|
116 |
+
current_length = 0
|
117 |
+
|
118 |
+
for sent in sentences:
|
119 |
+
sentence_text = str(sent).strip()
|
120 |
+
sentence_length = len(sentence_text)
|
121 |
+
|
122 |
+
# If sentence fits in current split
|
123 |
+
if current_length + sentence_length <= text_split_length:
|
124 |
+
current_split.append(sentence_text)
|
125 |
+
current_length += sentence_length + 1
|
126 |
+
|
127 |
+
# Handle long sentences
|
128 |
+
elif sentence_length > text_split_length:
|
129 |
+
# Add current split if exists
|
130 |
+
if current_split:
|
131 |
+
splits.append(" ".join(current_split))
|
132 |
+
current_split = []
|
133 |
+
current_length = 0
|
134 |
+
|
135 |
+
# Split long sentence at optimal points
|
136 |
+
remaining = sentence_text
|
137 |
+
while len(remaining) > text_split_length:
|
138 |
+
split_pos = find_best_split_point(
|
139 |
+
remaining,
|
140 |
+
text_split_length,
|
141 |
+
window_size=30
|
142 |
+
)
|
143 |
+
|
144 |
+
# Add split and continue with remainder
|
145 |
+
splits.append(remaining[:split_pos].strip())
|
146 |
+
remaining = remaining[split_pos:].strip()
|
147 |
+
|
148 |
+
# Handle remaining text
|
149 |
+
if remaining:
|
150 |
+
current_split = [remaining]
|
151 |
+
current_length = len(remaining)
|
152 |
+
|
153 |
+
# Start new split
|
154 |
+
else:
|
155 |
+
splits.append(" ".join(current_split))
|
156 |
+
current_split = [sentence_text]
|
157 |
+
current_length = sentence_length
|
158 |
+
|
159 |
+
# Add final split if needed
|
160 |
+
if current_split:
|
161 |
+
splits.append(" ".join(current_split))
|
162 |
+
|
163 |
+
cleaned_sentences = [s[:-1]+' ' if s.endswith('.') else s for s in splits if s] # prevents annoying sounds in italian
|
164 |
+
# Clean up splits
|
165 |
+
return cleaned_sentences
|
166 |
+
|
167 |
+
_whitespace_re = re.compile(r"\s+")
|
168 |
+
|
169 |
+
# List of (regular expression, replacement) pairs for abbreviations:
|
170 |
+
_abbreviations = {
|
171 |
+
"en": [
|
172 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
173 |
+
for x in [
|
174 |
+
("mrs", "misess"),
|
175 |
+
("mr", "mister"),
|
176 |
+
("dr", "doctor"),
|
177 |
+
("st", "saint"),
|
178 |
+
("co", "company"),
|
179 |
+
("jr", "junior"),
|
180 |
+
("maj", "major"),
|
181 |
+
("gen", "general"),
|
182 |
+
("drs", "doctors"),
|
183 |
+
("rev", "reverend"),
|
184 |
+
("lt", "lieutenant"),
|
185 |
+
("hon", "honorable"),
|
186 |
+
("sgt", "sergeant"),
|
187 |
+
("capt", "captain"),
|
188 |
+
("esq", "esquire"),
|
189 |
+
("ltd", "limited"),
|
190 |
+
("col", "colonel"),
|
191 |
+
("ft", "fort"),
|
192 |
+
]
|
193 |
+
],
|
194 |
+
"es": [
|
195 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
196 |
+
for x in [
|
197 |
+
("sra", "señora"),
|
198 |
+
("sr", "señor"),
|
199 |
+
("dr", "doctor"),
|
200 |
+
("dra", "doctora"),
|
201 |
+
("st", "santo"),
|
202 |
+
("co", "compañía"),
|
203 |
+
("jr", "junior"),
|
204 |
+
("ltd", "limitada"),
|
205 |
+
]
|
206 |
+
],
|
207 |
+
"fr": [
|
208 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
209 |
+
for x in [
|
210 |
+
("mme", "madame"),
|
211 |
+
("mr", "monsieur"),
|
212 |
+
("dr", "docteur"),
|
213 |
+
("st", "saint"),
|
214 |
+
("co", "compagnie"),
|
215 |
+
("jr", "junior"),
|
216 |
+
("ltd", "limitée"),
|
217 |
+
]
|
218 |
+
],
|
219 |
+
"de": [
|
220 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
221 |
+
for x in [
|
222 |
+
("fr", "frau"),
|
223 |
+
("dr", "doktor"),
|
224 |
+
("st", "sankt"),
|
225 |
+
("co", "firma"),
|
226 |
+
("jr", "junior"),
|
227 |
+
]
|
228 |
+
],
|
229 |
+
"pt": [
|
230 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
231 |
+
for x in [
|
232 |
+
("sra", "senhora"),
|
233 |
+
("sr", "senhor"),
|
234 |
+
("dr", "doutor"),
|
235 |
+
("dra", "doutora"),
|
236 |
+
("st", "santo"),
|
237 |
+
("co", "companhia"),
|
238 |
+
("jr", "júnior"),
|
239 |
+
("ltd", "limitada"),
|
240 |
+
]
|
241 |
+
],
|
242 |
+
"it": [
|
243 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
244 |
+
for x in [
|
245 |
+
# ("sig.ra", "signora"),
|
246 |
+
("sig", "signore"),
|
247 |
+
("dr", "dottore"),
|
248 |
+
("st", "santo"),
|
249 |
+
("co", "compagnia"),
|
250 |
+
("jr", "junior"),
|
251 |
+
("ltd", "limitata"),
|
252 |
+
]
|
253 |
+
],
|
254 |
+
"pl": [
|
255 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
256 |
+
for x in [
|
257 |
+
("p", "pani"),
|
258 |
+
("m", "pan"),
|
259 |
+
("dr", "doktor"),
|
260 |
+
("sw", "święty"),
|
261 |
+
("jr", "junior"),
|
262 |
+
]
|
263 |
+
],
|
264 |
+
"ar": [
|
265 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
266 |
+
for x in [
|
267 |
+
# There are not many common abbreviations in Arabic as in English.
|
268 |
+
]
|
269 |
+
],
|
270 |
+
"zh": [
|
271 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
272 |
+
for x in [
|
273 |
+
# Chinese doesn't typically use abbreviations in the same way as Latin-based scripts.
|
274 |
+
]
|
275 |
+
],
|
276 |
+
"cs": [
|
277 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
278 |
+
for x in [
|
279 |
+
("dr", "doktor"), # doctor
|
280 |
+
("ing", "inženýr"), # engineer
|
281 |
+
("p", "pan"), # Could also map to pani for woman but no easy way to do it
|
282 |
+
# Other abbreviations would be specialized and not as common.
|
283 |
+
]
|
284 |
+
],
|
285 |
+
"ru": [
|
286 |
+
(re.compile("\\b%s\\b" % x[0], re.IGNORECASE), x[1])
|
287 |
+
for x in [
|
288 |
+
("г-жа", "госпожа"), # Mrs.
|
289 |
+
("г-н", "господин"), # Mr.
|
290 |
+
("д-р", "доктор"), # doctor
|
291 |
+
# Other abbreviations are less common or specialized.
|
292 |
+
]
|
293 |
+
],
|
294 |
+
"nl": [
|
295 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
296 |
+
for x in [
|
297 |
+
("dhr", "de heer"), # Mr.
|
298 |
+
("mevr", "mevrouw"), # Mrs.
|
299 |
+
("dr", "dokter"), # doctor
|
300 |
+
("jhr", "jonkheer"), # young lord or nobleman
|
301 |
+
# Dutch uses more abbreviations, but these are the most common ones.
|
302 |
+
]
|
303 |
+
],
|
304 |
+
"tr": [
|
305 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
306 |
+
for x in [
|
307 |
+
("b", "bay"), # Mr.
|
308 |
+
("byk", "büyük"), # büyük
|
309 |
+
("dr", "doktor"), # doctor
|
310 |
+
# Add other Turkish abbreviations here if needed.
|
311 |
+
]
|
312 |
+
],
|
313 |
+
"hu": [
|
314 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
315 |
+
for x in [
|
316 |
+
("dr", "doktor"), # doctor
|
317 |
+
("b", "bácsi"), # Mr.
|
318 |
+
("nőv", "nővér"), # nurse
|
319 |
+
# Add other Hungarian abbreviations here if needed.
|
320 |
+
]
|
321 |
+
],
|
322 |
+
"ko": [
|
323 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
324 |
+
for x in [
|
325 |
+
# Korean doesn't typically use abbreviations in the same way as Latin-based scripts.
|
326 |
+
]
|
327 |
+
],
|
328 |
+
"vi": [
|
329 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
330 |
+
for x in [
|
331 |
+
# Vietnamese doesn't typically use abbreviations in the same way as Latin-based scripts.
|
332 |
+
]
|
333 |
+
],
|
334 |
+
}
|
335 |
+
|
336 |
+
def expand_abbreviations_multilingual(text, lang="en"):
|
337 |
+
if lang in _abbreviations:
|
338 |
+
for regex, replacement in _abbreviations[lang]:
|
339 |
+
text = re.sub(regex, replacement, text)
|
340 |
+
return text
|
341 |
+
|
342 |
+
_symbols_multilingual = {
|
343 |
+
"en": [
|
344 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
345 |
+
for x in [
|
346 |
+
("&", " and "),
|
347 |
+
("@", " at "),
|
348 |
+
("%", " percent "),
|
349 |
+
("#", " hash "),
|
350 |
+
("$", " dollar "),
|
351 |
+
("£", " pound "),
|
352 |
+
("°", " degree "),
|
353 |
+
]
|
354 |
+
],
|
355 |
+
"es": [
|
356 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
357 |
+
for x in [
|
358 |
+
("&", " y "),
|
359 |
+
("@", " arroba "),
|
360 |
+
("%", " por ciento "),
|
361 |
+
("#", " numeral "),
|
362 |
+
("$", " dolar "),
|
363 |
+
("£", " libra "),
|
364 |
+
("°", " grados "),
|
365 |
+
]
|
366 |
+
],
|
367 |
+
"fr": [
|
368 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
369 |
+
for x in [
|
370 |
+
("&", " et "),
|
371 |
+
("@", " arobase "),
|
372 |
+
("%", " pour cent "),
|
373 |
+
("#", " dièse "),
|
374 |
+
("$", " dollar "),
|
375 |
+
("£", " livre "),
|
376 |
+
("°", " degrés "),
|
377 |
+
]
|
378 |
+
],
|
379 |
+
"de": [
|
380 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
381 |
+
for x in [
|
382 |
+
("&", " und "),
|
383 |
+
("@", " at "),
|
384 |
+
("%", " prozent "),
|
385 |
+
("#", " raute "),
|
386 |
+
("$", " dollar "),
|
387 |
+
("£", " pfund "),
|
388 |
+
("°", " grad "),
|
389 |
+
]
|
390 |
+
],
|
391 |
+
"pt": [
|
392 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
393 |
+
for x in [
|
394 |
+
("&", " e "),
|
395 |
+
("@", " arroba "),
|
396 |
+
("%", " por cento "),
|
397 |
+
("#", " cardinal "),
|
398 |
+
("$", " dólar "),
|
399 |
+
("£", " libra "),
|
400 |
+
("°", " graus "),
|
401 |
+
]
|
402 |
+
],
|
403 |
+
"it": [
|
404 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
405 |
+
for x in [
|
406 |
+
("&", " e "),
|
407 |
+
("@", " chiocciola "),
|
408 |
+
("%", " per cento "),
|
409 |
+
("#", " cancelletto "),
|
410 |
+
("$", " dollaro "),
|
411 |
+
("£", " sterlina "),
|
412 |
+
("°", " gradi "),
|
413 |
+
]
|
414 |
+
],
|
415 |
+
"pl": [
|
416 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
417 |
+
for x in [
|
418 |
+
("&", " i "),
|
419 |
+
("@", " małpa "),
|
420 |
+
("%", " procent "),
|
421 |
+
("#", " krzyżyk "),
|
422 |
+
("$", " dolar "),
|
423 |
+
("£", " funt "),
|
424 |
+
("°", " stopnie "),
|
425 |
+
]
|
426 |
+
],
|
427 |
+
"ar": [
|
428 |
+
# Arabic
|
429 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
430 |
+
for x in [
|
431 |
+
("&", " و "),
|
432 |
+
("@", " على "),
|
433 |
+
("%", " في المئة "),
|
434 |
+
("#", " رقم "),
|
435 |
+
("$", " دولار "),
|
436 |
+
("£", " جنيه "),
|
437 |
+
("°", " درجة "),
|
438 |
+
]
|
439 |
+
],
|
440 |
+
"zh": [
|
441 |
+
# Chinese
|
442 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
443 |
+
for x in [
|
444 |
+
("&", " 和 "),
|
445 |
+
("@", " 在 "),
|
446 |
+
("%", " 百分之 "),
|
447 |
+
("#", " 号 "),
|
448 |
+
("$", " 美元 "),
|
449 |
+
("£", " 英镑 "),
|
450 |
+
("°", " 度 "),
|
451 |
+
]
|
452 |
+
],
|
453 |
+
"cs": [
|
454 |
+
# Czech
|
455 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
456 |
+
for x in [
|
457 |
+
("&", " a "),
|
458 |
+
("@", " na "),
|
459 |
+
("%", " procento "),
|
460 |
+
("#", " křížek "),
|
461 |
+
("$", " dolar "),
|
462 |
+
("£", " libra "),
|
463 |
+
("°", " stupně "),
|
464 |
+
]
|
465 |
+
],
|
466 |
+
"ru": [
|
467 |
+
# Russian
|
468 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
469 |
+
for x in [
|
470 |
+
("&", " и "),
|
471 |
+
("@", " собака "),
|
472 |
+
("%", " процентов "),
|
473 |
+
("#", " номер "),
|
474 |
+
("$", " доллар "),
|
475 |
+
("£", " фунт "),
|
476 |
+
("°", " градус "),
|
477 |
+
]
|
478 |
+
],
|
479 |
+
"nl": [
|
480 |
+
# Dutch
|
481 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
482 |
+
for x in [
|
483 |
+
("&", " en "),
|
484 |
+
("@", " bij "),
|
485 |
+
("%", " procent "),
|
486 |
+
("#", " hekje "),
|
487 |
+
("$", " dollar "),
|
488 |
+
("£", " pond "),
|
489 |
+
("°", " graden "),
|
490 |
+
]
|
491 |
+
],
|
492 |
+
"tr": [
|
493 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
494 |
+
for x in [
|
495 |
+
("&", " ve "),
|
496 |
+
("@", " at "),
|
497 |
+
("%", " yüzde "),
|
498 |
+
("#", " diyez "),
|
499 |
+
("$", " dolar "),
|
500 |
+
("£", " sterlin "),
|
501 |
+
("°", " derece "),
|
502 |
+
]
|
503 |
+
],
|
504 |
+
"hu": [
|
505 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
506 |
+
for x in [
|
507 |
+
("&", " és "),
|
508 |
+
("@", " kukac "),
|
509 |
+
("%", " százalék "),
|
510 |
+
("#", " kettőskereszt "),
|
511 |
+
("$", " dollár "),
|
512 |
+
("£", " font "),
|
513 |
+
("°", " fok "),
|
514 |
+
]
|
515 |
+
],
|
516 |
+
"ko": [
|
517 |
+
# Korean
|
518 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
519 |
+
for x in [
|
520 |
+
("&", " 그리고 "),
|
521 |
+
("@", " 에 "),
|
522 |
+
("%", " 퍼센트 "),
|
523 |
+
("#", " 번호 "),
|
524 |
+
("$", " 달러 "),
|
525 |
+
("£", " 파운드 "),
|
526 |
+
("°", " 도 "),
|
527 |
+
]
|
528 |
+
],
|
529 |
+
"vi": [
|
530 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
531 |
+
for x in [
|
532 |
+
("&", " và "),
|
533 |
+
("@", " tại "),
|
534 |
+
("%", " phần trăm "),
|
535 |
+
("#", " thăng "),
|
536 |
+
("$", " đô-la "),
|
537 |
+
("£", " bảng "),
|
538 |
+
("°", " độ "),
|
539 |
+
]
|
540 |
+
],
|
541 |
+
}
|
542 |
+
|
543 |
+
def expand_symbols_multilingual(text, lang="en"):
|
544 |
+
if lang in _symbols_multilingual:
|
545 |
+
for regex, replacement in _symbols_multilingual[lang]:
|
546 |
+
text = re.sub(regex, replacement, text)
|
547 |
+
text = text.replace(" ", " ") # Ensure there are no double spaces
|
548 |
+
return text.strip()
|
549 |
+
|
550 |
+
_ordinal_re = {
|
551 |
+
"en": re.compile(r"([0-9]+)(st|nd|rd|th)"),
|
552 |
+
"es": re.compile(r"([0-9]+)(º|ª|er|o|a|os|as)"),
|
553 |
+
"fr": re.compile(r"([0-9]+)(º|ª|er|re|e|ème)"),
|
554 |
+
"de": re.compile(r"([0-9]+)(st|nd|rd|th|º|ª|\.(?=\s|$))"),
|
555 |
+
"pt": re.compile(r"([0-9]+)(º|ª|o|a|os|as)"),
|
556 |
+
"it": re.compile(r"([0-9]+)(º|°|ª|o|a|i|e)"),
|
557 |
+
"pl": re.compile(r"([0-9]+)(º|ª|st|nd|rd|th)"),
|
558 |
+
"ar": re.compile(r"([0-9]+)(ون|ين|ث|ر|ى)"),
|
559 |
+
"cs": re.compile(r"([0-9]+)\.(?=\s|$)"), # In Czech, a dot is often used after the number to indicate ordinals.
|
560 |
+
"ru": re.compile(r"([0-9]+)(-й|-я|-е|-ое|-ье|-го)"),
|
561 |
+
"nl": re.compile(r"([0-9]+)(de|ste|e)"),
|
562 |
+
"tr": re.compile(r"([0-9]+)(\.|inci|nci|uncu|üncü|\.)"),
|
563 |
+
"hu": re.compile(r"([0-9]+)(\.|adik|edik|odik|edik|ödik|ödike|ik)"),
|
564 |
+
"ko": re.compile(r"([0-9]+)(번째|번|차|째)"),
|
565 |
+
"vi": re.compile(r"(thứ) ([0-9]+)"),
|
566 |
+
}
|
567 |
+
_number_re = re.compile(r"[0-9]+")
|
568 |
+
# noinspection Annotator
|
569 |
+
_currency_re = {
|
570 |
+
"USD": re.compile(r"((\$[0-9\.\,]*[0-9]+)|([0-9\.\,]*[0-9]+\$))"),
|
571 |
+
"GBP": re.compile(r"((£[0-9\.\,]*[0-9]+)|([0-9\.\,]*[0-9]+£))"),
|
572 |
+
"EUR": re.compile(r"(([0-9\.\,]*[0-9]+€)|((€[0-9\.\,]*[0-9]+)))"),
|
573 |
+
}
|
574 |
+
|
575 |
+
_comma_number_re = re.compile(r"\b\d{1,3}(,\d{3})*(\.\d+)?\b")
|
576 |
+
_dot_number_re = re.compile(r"\b\d{1,3}(\.\d{3})*(\,\d+)?\b")
|
577 |
+
_decimal_number_re = re.compile(r"([0-9]+[.,][0-9]+)")
|
578 |
+
|
579 |
+
def _remove_commas(m):
|
580 |
+
text = m.group(0)
|
581 |
+
if "," in text:
|
582 |
+
text = text.replace(",", "")
|
583 |
+
return text
|
584 |
+
|
585 |
+
def _remove_dots(m):
|
586 |
+
text = m.group(0)
|
587 |
+
if "." in text:
|
588 |
+
text = text.replace(".", "")
|
589 |
+
return text
|
590 |
+
|
591 |
+
def _expand_decimal_point(m, lang="en"):
|
592 |
+
amount = m.group(1).replace(",", ".")
|
593 |
+
return num2words(float(amount), lang=lang if lang != "cs" else "cz")
|
594 |
+
|
595 |
+
def _expand_currency(m, lang="en", currency="USD"):
|
596 |
+
amount = float((re.sub(r"[^\d.]", "", m.group(0).replace(",", "."))))
|
597 |
+
full_amount = num2words(amount, to="currency", currency=currency, lang=lang if lang != "cs" else "cz")
|
598 |
+
|
599 |
+
and_equivalents = {
|
600 |
+
"en": ", ",
|
601 |
+
"es": " con ",
|
602 |
+
"fr": " et ",
|
603 |
+
"de": " und ",
|
604 |
+
"pt": " e ",
|
605 |
+
"it": " e ",
|
606 |
+
"pl": ", ",
|
607 |
+
"cs": ", ",
|
608 |
+
"ru": ", ",
|
609 |
+
"nl": ", ",
|
610 |
+
"ar": ", ",
|
611 |
+
"tr": ", ",
|
612 |
+
"hu": ", ",
|
613 |
+
"ko": ", ",
|
614 |
+
"vi": ", ",
|
615 |
+
}
|
616 |
+
|
617 |
+
if amount.is_integer():
|
618 |
+
last_and = full_amount.rfind(and_equivalents.get(lang, ", "))
|
619 |
+
if last_and != -1:
|
620 |
+
full_amount = full_amount[:last_and]
|
621 |
+
|
622 |
+
return full_amount
|
623 |
+
|
624 |
+
def _expand_ordinal(m, lang="en"):
|
625 |
+
return num2words(int(m.group(1)), ordinal=True, lang=lang if lang != "cs" else "cz")
|
626 |
+
|
627 |
+
def _expand_number(m, lang="en"):
|
628 |
+
return num2words(int(m.group(0)), lang=lang if lang != "cs" else "cz")
|
629 |
+
|
630 |
+
def expand_numbers_multilingual(text, lang="en"):
|
631 |
+
if lang == "zh":
|
632 |
+
text = zh_num2words()(text)
|
633 |
+
else:
|
634 |
+
if lang in ["en", "ru"]:
|
635 |
+
text = re.sub(_comma_number_re, _remove_commas, text)
|
636 |
+
else:
|
637 |
+
text = re.sub(_dot_number_re, _remove_dots, text)
|
638 |
+
try:
|
639 |
+
text = re.sub(_currency_re["GBP"], lambda m: _expand_currency(m, lang, "GBP"), text)
|
640 |
+
text = re.sub(_currency_re["USD"], lambda m: _expand_currency(m, lang, "USD"), text)
|
641 |
+
text = re.sub(_currency_re["EUR"], lambda m: _expand_currency(m, lang, "EUR"), text)
|
642 |
+
except Exception as e:
|
643 |
+
pass
|
644 |
+
if lang != "tr":
|
645 |
+
text = re.sub(_decimal_number_re, lambda m: _expand_decimal_point(m, lang), text)
|
646 |
+
if lang in _ordinal_re:
|
647 |
+
text = re.sub(_ordinal_re[lang], lambda m: _expand_ordinal(m, lang), text)
|
648 |
+
text = re.sub(_number_re, lambda m: _expand_number(m, lang), text)
|
649 |
+
return text
|
650 |
+
|
651 |
+
def lowercase(text):
|
652 |
+
return text.lower()
|
653 |
+
|
654 |
+
def collapse_whitespace(text):
|
655 |
+
return re.sub(_whitespace_re, " ", text)
|
656 |
+
|
657 |
+
def multilingual_cleaners(text, lang):
|
658 |
+
text = text.replace('"', "")
|
659 |
+
if lang == "tr":
|
660 |
+
text = text.replace("İ", "i")
|
661 |
+
text = text.replace("Ö", "ö")
|
662 |
+
text = text.replace("Ü", "ü")
|
663 |
+
text = lowercase(text)
|
664 |
+
text = expand_numbers_multilingual(text, lang)
|
665 |
+
text = expand_abbreviations_multilingual(text, lang)
|
666 |
+
text = expand_symbols_multilingual(text, lang=lang)
|
667 |
+
text = collapse_whitespace(text)
|
668 |
+
return text
|
669 |
+
|
670 |
+
def basic_cleaners(text):
|
671 |
+
"""Basic pipeline that lowercases and collapses whitespace without transliteration."""
|
672 |
+
text = lowercase(text)
|
673 |
+
text = collapse_whitespace(text)
|
674 |
+
return text
|
675 |
+
|
676 |
+
def chinese_transliterate(text):
|
677 |
+
return "".join(
|
678 |
+
[p[0] for p in pypinyin.pinyin(text, style=pypinyin.Style.TONE3, heteronym=False, neutral_tone_with_five=True)]
|
679 |
+
)
|
680 |
+
|
681 |
+
def japanese_cleaners(text, katsu):
|
682 |
+
text = katsu.romaji(text)
|
683 |
+
text = lowercase(text)
|
684 |
+
return text
|
685 |
+
|
686 |
+
def korean_transliterate(text, transliter):
|
687 |
+
return transliter.translit(text)
|
688 |
+
|
689 |
+
# Fast Tokenizer Class
|
690 |
+
|
691 |
+
class XTTSTokenizerFast(PreTrainedTokenizerFast):
|
692 |
+
"""
|
693 |
+
Fast Tokenizer implementation for XTTS model using HuggingFace's PreTrainedTokenizerFast
|
694 |
+
"""
|
695 |
+
|
696 |
+
def __init__(
|
697 |
+
self,
|
698 |
+
vocab_file: str = None,
|
699 |
+
tokenizer_object: Optional[Tokenizer] = None,
|
700 |
+
unk_token: str = "[UNK]",
|
701 |
+
pad_token: str = "[PAD]",
|
702 |
+
bos_token: str = "[START]",
|
703 |
+
eos_token: str = "[STOP]",
|
704 |
+
auto_map: dict = {"AutoTokenizer": ["AstraMindAI/xtts2-gpt--tokenizer.XTTSTokenizerFast", None]},
|
705 |
+
clean_up_tokenization_spaces: bool = True,
|
706 |
+
**kwargs
|
707 |
+
):
|
708 |
+
if tokenizer_object is None and vocab_file is not None:
|
709 |
+
tokenizer_object = Tokenizer.from_file(vocab_file)
|
710 |
+
|
711 |
+
if tokenizer_object is not None:
|
712 |
+
# Configure the tokenizer
|
713 |
+
tokenizer_object.pre_tokenizer = WhitespaceSplit()
|
714 |
+
tokenizer_object.post_processor = TemplateProcessing(
|
715 |
+
single=f"{bos_token} $A {eos_token}",
|
716 |
+
special_tokens=[
|
717 |
+
(bos_token, tokenizer_object.token_to_id(bos_token)),
|
718 |
+
(eos_token, tokenizer_object.token_to_id(eos_token)),
|
719 |
+
],
|
720 |
+
)
|
721 |
+
|
722 |
+
super().__init__(
|
723 |
+
tokenizer_object=tokenizer_object,
|
724 |
+
unk_token=unk_token,
|
725 |
+
pad_token=pad_token,
|
726 |
+
bos_token=bos_token,
|
727 |
+
eos_token=eos_token,
|
728 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
729 |
+
**kwargs
|
730 |
+
)
|
731 |
+
|
732 |
+
# Character limits per language
|
733 |
+
self.char_limits = {
|
734 |
+
"en": 250, "de": 253, "fr": 273, "es": 239,
|
735 |
+
"it": 213, "pt": 203, "pl": 224, "zh": 82,
|
736 |
+
"ar": 166, "cs": 186, "ru": 182, "nl": 251,
|
737 |
+
"tr": 226, "ja": 71, "hu": 224, "ko": 95,
|
738 |
+
"vi": 200,
|
739 |
+
}
|
740 |
+
|
741 |
+
# Initialize language tools
|
742 |
+
self._katsu = None
|
743 |
+
self._korean_transliter = Transliter(academic)
|
744 |
+
|
745 |
+
# Ensure pad_token_id is set
|
746 |
+
if self.pad_token_id is None:
|
747 |
+
self.pad_token_id = self.tokenizer.token_to_id(self.pad_token)
|
748 |
+
|
749 |
+
@cached_property
|
750 |
+
def katsu(self):
|
751 |
+
if self._katsu is None:
|
752 |
+
self._katsu = cutlet.Cutlet()
|
753 |
+
return self._katsu
|
754 |
+
|
755 |
+
def preprocess_text(self, text: str, lang: str) -> str:
|
756 |
+
"""Apply text preprocessing for language"""
|
757 |
+
base_lang = lang.split("-")[0] # remove region
|
758 |
+
if base_lang in {"ar", "cs", "de", "en", "es", "fr", "hu", "it",
|
759 |
+
"nl", "pl", "pt", "ru", "tr", "zh", "ko", "vi"}:
|
760 |
+
text = multilingual_cleaners(text, base_lang)
|
761 |
+
if base_lang == "zh":
|
762 |
+
text = chinese_transliterate(text)
|
763 |
+
if base_lang == "ko":
|
764 |
+
text = korean_transliterate(text, self._korean_transliter)
|
765 |
+
elif base_lang == "ja":
|
766 |
+
text = japanese_cleaners(text, self.katsu)
|
767 |
+
else:
|
768 |
+
text = basic_cleaners(text)
|
769 |
+
return text
|
770 |
+
|
771 |
+
def batch_encode_with_split(self, texts: Union[str, List[str]], lang: Union[str, List[str]],
|
772 |
+
**kwargs) -> torch.Tensor:
|
773 |
+
"""
|
774 |
+
Split texts into smaller chunks based on language character limits and encode them using HuggingFace fast tokenizer.
|
775 |
+
strictly mimic the xttsv2 tokenizer
|
776 |
+
"""
|
777 |
+
# Convert single inputs to lists
|
778 |
+
if isinstance(texts, str):
|
779 |
+
texts = [texts]
|
780 |
+
if isinstance(lang, str):
|
781 |
+
lang = [lang]
|
782 |
+
# Ensure lang list matches texts list
|
783 |
+
if len(lang) == 1 and len(texts) > 1:
|
784 |
+
lang = lang * len(texts)
|
785 |
+
|
786 |
+
# Check if texts and lang have the same length
|
787 |
+
if len(texts) != len(lang):
|
788 |
+
raise ValueError(f"Number of texts ({len(texts)}) does not match number of languages ({len(lang)}).")
|
789 |
+
|
790 |
+
chunk_list = []
|
791 |
+
max_splits = 0
|
792 |
+
|
793 |
+
# For each text, split into chunks based on character limit
|
794 |
+
for text, text_lang in zip(texts, lang):
|
795 |
+
# Get language character limit
|
796 |
+
base_lang = text_lang.split("-")[0]
|
797 |
+
char_limit = self.char_limits.get(base_lang, 250)
|
798 |
+
|
799 |
+
# Clean and preprocess
|
800 |
+
#text = self.preprocess_text(text, text_lang) we do this in the hidden function
|
801 |
+
|
802 |
+
# Split text into sentences/chunks based on language
|
803 |
+
chunk_list = split_sentence(text, base_lang, text_split_length=char_limit)
|
804 |
+
|
805 |
+
# Ensure the tokenizer is a fast tokenizer
|
806 |
+
if not self.is_fast:
|
807 |
+
raise ValueError("The tokenizer must be a fast tokenizer.")
|
808 |
+
|
809 |
+
# Encode all chunks using the fast tokenizer
|
810 |
+
encoding: BatchEncoding = self(
|
811 |
+
chunk_list,
|
812 |
+
lang = lang,
|
813 |
+
add_special_tokens=False,
|
814 |
+
padding=False,
|
815 |
+
**kwargs
|
816 |
+
)
|
817 |
+
|
818 |
+
# The 'input_ids' tensor will have shape [total_chunks, max_sequence_length]
|
819 |
+
return encoding['input_ids'] # Tensor of shape [total_chunks, sequence_length]
|
820 |
+
|
821 |
+
def _batch_encode_plus(
|
822 |
+
self,
|
823 |
+
batch_text_or_text_pairs,
|
824 |
+
add_special_tokens: bool = True,
|
825 |
+
padding_strategy=PaddingStrategy.DO_NOT_PAD,
|
826 |
+
truncation_strategy=TruncationStrategy.DO_NOT_TRUNCATE,
|
827 |
+
max_length: Optional[int] = None,
|
828 |
+
stride: int = 0,
|
829 |
+
is_split_into_words: bool = False,
|
830 |
+
pad_to_multiple_of: Optional[int] = None,
|
831 |
+
return_tensors: Optional[str] = None,
|
832 |
+
return_token_type_ids: Optional[bool] = None,
|
833 |
+
return_attention_mask: Optional[bool] = None,
|
834 |
+
return_overflowing_tokens: bool = False,
|
835 |
+
return_special_tokens_mask: bool = False,
|
836 |
+
return_offsets_mapping: bool = False,
|
837 |
+
return_length: bool = False,
|
838 |
+
verbose: bool = True,
|
839 |
+
**kwargs
|
840 |
+
) -> Dict[str, Any]:
|
841 |
+
"""
|
842 |
+
Override batch encoding to handle language-specific preprocessing
|
843 |
+
"""
|
844 |
+
lang = kwargs.pop("lang", ["en"] * len(batch_text_or_text_pairs))
|
845 |
+
if isinstance(lang, str):
|
846 |
+
lang = [lang]
|
847 |
+
# Ensure lang list matches texts list
|
848 |
+
if len(lang) == 1 and len(batch_text_or_text_pairs) > 1:
|
849 |
+
lang = lang * len(batch_text_or_text_pairs)
|
850 |
+
|
851 |
+
# Check if batch_text_or_text_pairs and lang have the same length
|
852 |
+
if len(batch_text_or_text_pairs) != len(lang):
|
853 |
+
raise ValueError(f"Number of texts ({len(batch_text_or_text_pairs)}) does not match number of languages ({len(lang)}).")
|
854 |
+
|
855 |
+
# Preprocess each text in the batch with its corresponding language
|
856 |
+
processed_texts = []
|
857 |
+
for text, text_lang in zip(batch_text_or_text_pairs, lang):
|
858 |
+
if isinstance(text, str):
|
859 |
+
# Check length and preprocess
|
860 |
+
#self.check_input_length(text, text_lang)
|
861 |
+
processed_text = self.preprocess_text(text, text_lang)
|
862 |
+
|
863 |
+
# Format text with language tag and spaces
|
864 |
+
base_lang = text_lang.split("-")[0]
|
865 |
+
lang_code = "zh-cn" if base_lang == "zh" else base_lang
|
866 |
+
processed_text = f"[{lang_code}]{processed_text}"
|
867 |
+
processed_text = processed_text.replace(" ", "[SPACE]")
|
868 |
+
|
869 |
+
processed_texts.append(processed_text)
|
870 |
+
else:
|
871 |
+
processed_texts.append(text)
|
872 |
+
|
873 |
+
# Call the parent class's encoding method with processed texts
|
874 |
+
return super()._batch_encode_plus(
|
875 |
+
processed_texts,
|
876 |
+
add_special_tokens=add_special_tokens,
|
877 |
+
padding_strategy=padding_strategy,
|
878 |
+
truncation_strategy=truncation_strategy,
|
879 |
+
max_length=max_length,
|
880 |
+
stride=stride,
|
881 |
+
is_split_into_words=is_split_into_words,
|
882 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
883 |
+
return_tensors=return_tensors,
|
884 |
+
return_token_type_ids=return_token_type_ids,
|
885 |
+
return_attention_mask=return_attention_mask,
|
886 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
887 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
888 |
+
return_offsets_mapping=return_offsets_mapping,
|
889 |
+
return_length=return_length,
|
890 |
+
verbose=verbose,
|
891 |
+
**kwargs
|
892 |
+
)
|
893 |
+
|
894 |
+
|
895 |
+
def __call__(
|
896 |
+
self,
|
897 |
+
text: Union[str, List[str]],
|
898 |
+
lang: Union[str, List[str]] = "en",
|
899 |
+
add_special_tokens: bool = True,
|
900 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
901 |
+
truncation: Union[bool, str, TruncationStrategy] = False,
|
902 |
+
max_length: Optional[int] = None,
|
903 |
+
stride: int = 0,
|
904 |
+
return_tensors: Optional[str] = None,
|
905 |
+
return_token_type_ids: Optional[bool] = None,
|
906 |
+
return_attention_mask: Optional[bool] = True,
|
907 |
+
**kwargs
|
908 |
+
):
|
909 |
+
"""
|
910 |
+
Main tokenization method
|
911 |
+
"""
|
912 |
+
# Convert single string to list for batch processing
|
913 |
+
if isinstance(text, str):
|
914 |
+
text = [text]
|
915 |
+
if isinstance(lang, str):
|
916 |
+
lang = [lang]
|
917 |
+
# Ensure lang list matches texts list
|
918 |
+
if len(lang) == 1 and len(text) > 1:
|
919 |
+
lang = lang * len(text)
|
920 |
+
|
921 |
+
# Ensure text and lang lists have same length
|
922 |
+
if len(text) != len(lang):
|
923 |
+
raise ValueError(f"Number of texts ({len(text)}) does not match number of languages ({len(lang)}).")
|
924 |
+
|
925 |
+
# Convert padding strategy
|
926 |
+
if isinstance(padding, bool):
|
927 |
+
padding_strategy = PaddingStrategy.LONGEST if padding else PaddingStrategy.DO_NOT_PAD
|
928 |
+
else:
|
929 |
+
padding_strategy = PaddingStrategy(padding)
|
930 |
+
|
931 |
+
# Convert truncation strategy
|
932 |
+
if isinstance(truncation, bool):
|
933 |
+
truncation_strategy = TruncationStrategy.LONGEST_FIRST if truncation else TruncationStrategy.DO_NOT_TRUNCATE
|
934 |
+
else:
|
935 |
+
truncation_strategy = TruncationStrategy(truncation)
|
936 |
+
|
937 |
+
# Use the batch encoding method
|
938 |
+
encoded = self._batch_encode_plus(
|
939 |
+
text,
|
940 |
+
add_special_tokens=add_special_tokens,
|
941 |
+
padding_strategy=padding_strategy,
|
942 |
+
truncation_strategy=truncation_strategy,
|
943 |
+
max_length=max_length,
|
944 |
+
stride=stride,
|
945 |
+
return_tensors=return_tensors,
|
946 |
+
return_token_type_ids=return_token_type_ids,
|
947 |
+
return_attention_mask=return_attention_mask,
|
948 |
+
lang=lang,
|
949 |
+
**kwargs
|
950 |
+
)
|
951 |
+
|
952 |
+
return encoded
|
xtts-v2.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:130a9659aed2056d094e6d73f31474685d414f98747a61835a153038991e01ef
|
3 |
+
size 352299952
|
xtts2_config.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import asdict, dataclass
|
2 |
+
from typing import Dict, Optional, List
|
3 |
+
from transformers.configuration_utils import PretrainedConfig
|
4 |
+
from transformers.utils import logging
|
5 |
+
|
6 |
+
logger = logging.get_logger(__name__)
|
7 |
+
|
8 |
+
|
9 |
+
@dataclass
|
10 |
+
class GPTAudioConfig:
|
11 |
+
"""Configuration for GPT audio processing parameters"""
|
12 |
+
mel_channels: int = 80
|
13 |
+
sample_rate: int = 22050
|
14 |
+
output_sample_rate: int = 24000
|
15 |
+
|
16 |
+
@dataclass
|
17 |
+
class XTTSAudioConfig:
|
18 |
+
"""Configuration for audio processing parameters"""
|
19 |
+
sample_rate: int = 22050
|
20 |
+
output_sample_rate: int = 24000
|
21 |
+
mel_channels: int = 80
|
22 |
+
hop_length: int = 256
|
23 |
+
win_length: int = 1024
|
24 |
+
n_fft: int = 1024
|
25 |
+
fmin: int = 0
|
26 |
+
fmax: int = 8000
|
27 |
+
power: float = 1.0
|
28 |
+
mel_norms_file: Optional[str] = None
|
29 |
+
|
30 |
+
|
31 |
+
class XTTSGPTConfig(PretrainedConfig):
|
32 |
+
"""Configuration class for the GPT component of XTTS."""
|
33 |
+
model_type = "xtts_gpt"
|
34 |
+
|
35 |
+
def __init__(
|
36 |
+
self,
|
37 |
+
# Model architecture
|
38 |
+
hidden_size: int = 1024, # gpt_n_model_channels in original
|
39 |
+
n_inner: int = 4096,
|
40 |
+
num_hidden_layers: int = 30, # gpt_layers in original
|
41 |
+
num_attention_heads: int = 16, # gpt_n_heads in original
|
42 |
+
|
43 |
+
# Tokenizer settings
|
44 |
+
vocab_size: int = 7544, # gpt_number_text_tokens in original
|
45 |
+
number_text_tokens: int = 7544, # Explicit text token vocabulary size
|
46 |
+
start_text_token: Optional[int] = None,
|
47 |
+
stop_text_token: Optional[int] = None,
|
48 |
+
|
49 |
+
# Audio token settings
|
50 |
+
num_audio_tokens: int = 1026, # gpt_num_audio_tokens in original
|
51 |
+
start_audio_token: int = 1024, # gpt_start_audio_token in original
|
52 |
+
stop_audio_token: int = 1025, # gpt_stop_audio_token in original
|
53 |
+
|
54 |
+
# Sequence length settings
|
55 |
+
max_audio_tokens: int = 605, # gpt_max_audio_tokens in original
|
56 |
+
max_text_tokens: int = 402, # gpt_max_text_tokens in original
|
57 |
+
max_prompt_tokens: int = 70, # gpt_max_prompt_tokens in original
|
58 |
+
gpt_max_audio_tokens: int = 605, # Used for generation
|
59 |
+
|
60 |
+
# Model behavior settings
|
61 |
+
use_masking_gt_prompt_approach: bool = True, # gpt_use_masking_gt_prompt_approach in original
|
62 |
+
use_perceiver_resampler: bool = True, # gpt_use_perceiver_resampler in original
|
63 |
+
kv_cache: bool = True,
|
64 |
+
enable_redaction: bool = False,
|
65 |
+
|
66 |
+
# GPT batch settings
|
67 |
+
gpt_batch_size: int = 1,
|
68 |
+
|
69 |
+
# Audio processing
|
70 |
+
audio_config: Optional[Dict] = None,
|
71 |
+
|
72 |
+
# Architecture specifics
|
73 |
+
layer_norm_epsilon: float = 1e-5,
|
74 |
+
initializer_range: float = 0.02,
|
75 |
+
add_cross_attention: bool = False,
|
76 |
+
scale_attn_by_inverse_layer_idx: bool = False,
|
77 |
+
reorder_and_upcast_attn: bool = False,
|
78 |
+
|
79 |
+
# Size settings for the decoder
|
80 |
+
decoder_input_dim: int = 1024,
|
81 |
+
architectures=["XttsGPT"],
|
82 |
+
auto_map={
|
83 |
+
"AutoConfig": "AstraMindAI/xtts2-gpt--gpt_config.XTTSGPTConfig",
|
84 |
+
"AutoModelForCausalLM": "AstraMindAI/xtts2-gpt--xtts2_gpt_modeling.XttsGPT",
|
85 |
+
},
|
86 |
+
activation_function: str = "gelu",
|
87 |
+
attn_pdrop: float = 0.1,
|
88 |
+
**kwargs
|
89 |
+
):
|
90 |
+
super().__init__(**kwargs)
|
91 |
+
self.architectures = architectures
|
92 |
+
self.auto_map = auto_map
|
93 |
+
self.audio_config = GPTAudioConfig(
|
94 |
+
**audio_config if audio_config is not None else {}
|
95 |
+
)
|
96 |
+
self.activation_function = activation_function
|
97 |
+
self.attn_pdrop = attn_pdrop
|
98 |
+
self.hidden_size = hidden_size
|
99 |
+
self.n_inner = n_inner
|
100 |
+
self.num_hidden_layers = num_hidden_layers
|
101 |
+
self.num_attention_heads = num_attention_heads
|
102 |
+
|
103 |
+
self.vocab_size = vocab_size
|
104 |
+
self.number_text_tokens = number_text_tokens
|
105 |
+
self.start_text_token = start_text_token
|
106 |
+
self.stop_text_token = stop_text_token
|
107 |
+
|
108 |
+
self.num_audio_tokens = num_audio_tokens
|
109 |
+
self.start_audio_token = start_audio_token
|
110 |
+
self.stop_audio_token = stop_audio_token
|
111 |
+
|
112 |
+
self.max_audio_tokens = max_audio_tokens
|
113 |
+
self.max_text_tokens = max_text_tokens
|
114 |
+
self.max_prompt_tokens = max_prompt_tokens
|
115 |
+
self.gpt_max_audio_tokens = gpt_max_audio_tokens
|
116 |
+
|
117 |
+
self.use_masking_gt_prompt_approach = use_masking_gt_prompt_approach
|
118 |
+
self.use_perceiver_resampler = use_perceiver_resampler
|
119 |
+
self.kv_cache = kv_cache
|
120 |
+
self.enable_redaction = enable_redaction
|
121 |
+
|
122 |
+
self.gpt_batch_size = gpt_batch_size
|
123 |
+
|
124 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
125 |
+
self.initializer_range = initializer_range
|
126 |
+
self.add_cross_attention = add_cross_attention
|
127 |
+
self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
|
128 |
+
self.reorder_and_upcast_attn = reorder_and_upcast_attn
|
129 |
+
|
130 |
+
self.decoder_input_dim = decoder_input_dim
|
131 |
+
|
132 |
+
def to_dict(self) -> Dict:
|
133 |
+
"""Convert the config to a dictionary."""
|
134 |
+
output = super().to_dict()
|
135 |
+
output["audio_config"] = asdict(self.audio_config)
|
136 |
+
return output
|
137 |
+
|
138 |
+
@classmethod
|
139 |
+
def from_dict(cls, config_dict: Dict, *args, **kwargs) -> "XTTSGPTConfig":
|
140 |
+
"""Create a config from a dictionary."""
|
141 |
+
return cls(**config_dict)
|
142 |
+
|
143 |
+
|
144 |
+
class XTTSConfig(PretrainedConfig):
|
145 |
+
"""Configuration class for XTTS model components except GPT."""
|
146 |
+
model_type = "xtts"
|
147 |
+
|
148 |
+
def __init__(
|
149 |
+
self,
|
150 |
+
# Audio settings
|
151 |
+
audio_config: Optional[Dict] = None,
|
152 |
+
input_sample_rate: int = 22050,
|
153 |
+
output_sample_rate: int = 24000,
|
154 |
+
output_hop_length: int = 256,
|
155 |
+
|
156 |
+
# Model architecture
|
157 |
+
decoder_input_dim: int = 1024,
|
158 |
+
d_vector_dim: int = 512,
|
159 |
+
cond_d_vector_in_each_upsampling_layer: bool = True,
|
160 |
+
|
161 |
+
# Training settings
|
162 |
+
gpt_code_stride_len: int = 1024,
|
163 |
+
duration_const: int = 102400,
|
164 |
+
|
165 |
+
# Tokenizer settings
|
166 |
+
tokenizer_file: str = "",
|
167 |
+
num_chars: int = 255,
|
168 |
+
|
169 |
+
# Language support
|
170 |
+
languages: Optional[List[str]] = None,
|
171 |
+
|
172 |
+
# GPT configuration
|
173 |
+
gpt_config: Optional[Dict] = None,
|
174 |
+
architectures=["Xtts"],
|
175 |
+
auto_map = {
|
176 |
+
"AutoConfig": "AstraMindAI/xtts2--xtts2_config.XTTSConfig",
|
177 |
+
"AutoModelForCausalLM": "AstraMindAI/xtts2--xtts2_modeling.Xtts",
|
178 |
+
},
|
179 |
+
**kwargs
|
180 |
+
):
|
181 |
+
super().__init__(**kwargs)
|
182 |
+
self.architectures = architectures
|
183 |
+
self.auto_map = auto_map
|
184 |
+
# Initialize audio config
|
185 |
+
self.audio_config = XTTSAudioConfig(
|
186 |
+
**audio_config if audio_config is not None else {}
|
187 |
+
)
|
188 |
+
|
189 |
+
self.input_sample_rate = input_sample_rate
|
190 |
+
self.output_sample_rate = output_sample_rate
|
191 |
+
self.output_hop_length = output_hop_length
|
192 |
+
|
193 |
+
self.decoder_input_dim = decoder_input_dim
|
194 |
+
self.d_vector_dim = d_vector_dim
|
195 |
+
self.cond_d_vector_in_each_upsampling_layer = cond_d_vector_in_each_upsampling_layer
|
196 |
+
|
197 |
+
self.gpt_code_stride_len = gpt_code_stride_len
|
198 |
+
self.duration_const = duration_const
|
199 |
+
|
200 |
+
self.tokenizer_file = tokenizer_file
|
201 |
+
self.num_chars = num_chars
|
202 |
+
|
203 |
+
# Initialize GPT config
|
204 |
+
self.gpt = XTTSGPTConfig(**gpt_config if gpt_config is not None else {})
|
205 |
+
|
206 |
+
if languages is None:
|
207 |
+
self.languages = [
|
208 |
+
"en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru",
|
209 |
+
"nl", "cs", "ar", "zh-cn", "hu", "ko", "ja", "hi", "vi",
|
210 |
+
]
|
211 |
+
else:
|
212 |
+
self.languages = languages
|
213 |
+
|
214 |
+
def to_dict(self) -> Dict:
|
215 |
+
"""Convert the config to a dictionary."""
|
216 |
+
output = super().to_dict()
|
217 |
+
output["audio_config"] = asdict(self.audio_config)
|
218 |
+
output["gpt_config"] = self.gpt.to_dict()
|
219 |
+
return output
|
220 |
+
|
221 |
+
@classmethod
|
222 |
+
def from_dict(cls, config_dict: Dict, *args, **kwargs) -> "XTTSConfig":
|
223 |
+
"""Create a config from a dictionary."""
|
224 |
+
if "gpt_config" in config_dict:
|
225 |
+
gpt_config = config_dict["gpt_config"]
|
226 |
+
config_dict = {k: v for k, v in config_dict.items() if k != "gpt_config"}
|
227 |
+
return cls(gpt_config=gpt_config, **config_dict)
|
228 |
+
return cls(**config_dict)
|
xtts2_modeling.py
ADDED
@@ -0,0 +1,1070 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import functools
|
3 |
+
import logging
|
4 |
+
import random
|
5 |
+
import time
|
6 |
+
import uuid
|
7 |
+
from dataclasses import dataclass
|
8 |
+
from pathlib import Path
|
9 |
+
from typing import Optional, List, Tuple, Union, AsyncGenerator, Dict, Any
|
10 |
+
from concurrent.futures import ThreadPoolExecutor
|
11 |
+
|
12 |
+
import librosa
|
13 |
+
import torch
|
14 |
+
import numpy as np
|
15 |
+
import torchaudio
|
16 |
+
import sounddevice as sd
|
17 |
+
import io
|
18 |
+
from torch import nn
|
19 |
+
from IPython.display import Audio, display
|
20 |
+
|
21 |
+
from vllm import AsyncLLMEngine, AsyncEngineArgs, SamplingParams, TokensPrompt, RequestOutput
|
22 |
+
from vllm.multimodal import MultiModalDataDict
|
23 |
+
from vllm.utils import Counter
|
24 |
+
|
25 |
+
from TTS.TTS.tts.layers.xtts.hifigan_decoder import HifiDecoder
|
26 |
+
|
27 |
+
from TTS.tts.layers.xtts.latent_encoder import ConditioningEncoder # noqa
|
28 |
+
from TTS.tts.layers.xtts.perceiver_encoder import PerceiverResampler # noqa
|
29 |
+
|
30 |
+
from .xtts2_config import XTTSConfig, XTTSGPTConfig
|
31 |
+
from .tokenizer import XTTSTokenizerFast
|
32 |
+
|
33 |
+
from ..xtts2_gpt.xtts2_gpt_modeling import LearnedPositionEmbeddings
|
34 |
+
|
35 |
+
|
36 |
+
def wav_to_mel_cloning(
|
37 |
+
wav,
|
38 |
+
mel_norms_file="../experiments/clips_mel_norms.pth",
|
39 |
+
mel_norms=None,
|
40 |
+
device=torch.device("cpu"),
|
41 |
+
n_fft=4096,
|
42 |
+
hop_length=1024,
|
43 |
+
win_length=4096,
|
44 |
+
power=2,
|
45 |
+
normalized=False,
|
46 |
+
sample_rate=22050,
|
47 |
+
f_min=0,
|
48 |
+
f_max=8000,
|
49 |
+
n_mels=80,
|
50 |
+
):
|
51 |
+
mel_stft = torchaudio.transforms.MelSpectrogram(
|
52 |
+
n_fft=n_fft,
|
53 |
+
hop_length=hop_length,
|
54 |
+
win_length=win_length,
|
55 |
+
power=power,
|
56 |
+
normalized=normalized,
|
57 |
+
sample_rate=sample_rate,
|
58 |
+
f_min=f_min,
|
59 |
+
f_max=f_max,
|
60 |
+
n_mels=n_mels,
|
61 |
+
norm="slaney",
|
62 |
+
).to(device)
|
63 |
+
wav = wav.to(device)
|
64 |
+
mel = mel_stft(wav)
|
65 |
+
mel = torch.log(torch.clamp(mel, min=1e-5))
|
66 |
+
if mel_norms is None:
|
67 |
+
mel_norms = torch.load(mel_norms_file, map_location=device)
|
68 |
+
mel = mel / mel_norms.unsqueeze(0).unsqueeze(-1)
|
69 |
+
return mel
|
70 |
+
|
71 |
+
|
72 |
+
def load_audio(audiopath, sampling_rate):
|
73 |
+
audio, lsr = torchaudio.load(audiopath)
|
74 |
+
|
75 |
+
# Stereo to mono if needed
|
76 |
+
if audio.size(0) != 1:
|
77 |
+
audio = torch.mean(audio, dim=0, keepdim=True)
|
78 |
+
|
79 |
+
if lsr != sampling_rate:
|
80 |
+
audio = torchaudio.functional.resample(audio, lsr, sampling_rate)
|
81 |
+
|
82 |
+
# Clip audio invalid values
|
83 |
+
audio.clip_(-1, 1)
|
84 |
+
return audio
|
85 |
+
|
86 |
+
|
87 |
+
@dataclass
|
88 |
+
class XTTSRequest:
|
89 |
+
"""Container for XTTS inference request data"""
|
90 |
+
request_id: str
|
91 |
+
text: Union[AsyncGenerator[str, None], str]
|
92 |
+
language: str
|
93 |
+
speaker_file: str # Path to the speaker audio file
|
94 |
+
generate_every_n_chars: Optional[int] = None
|
95 |
+
temperature: float = 0.75
|
96 |
+
top_p: float = 0.85
|
97 |
+
top_k: int = 50
|
98 |
+
repetition_penalty: float = 5.0
|
99 |
+
length_penalty: float = 1.0
|
100 |
+
do_sample: bool = True
|
101 |
+
max_ref_length: int = 60
|
102 |
+
gpt_cond_len: int = 30
|
103 |
+
gpt_cond_chunk_len: int = 4
|
104 |
+
|
105 |
+
|
106 |
+
import threading
|
107 |
+
|
108 |
+
class HiddenStatesCollector:
|
109 |
+
def __init__(self):
|
110 |
+
self.outputs = {}
|
111 |
+
self.lock = threading.Lock()
|
112 |
+
|
113 |
+
def __call__(self, outputs: Optional[torch.Tensor], request_id: str):
|
114 |
+
"""Save outputs for a specific request"""
|
115 |
+
with self.lock:
|
116 |
+
if request_id not in self.outputs:
|
117 |
+
self.outputs[request_id] = []
|
118 |
+
self.outputs[request_id].append(outputs)
|
119 |
+
|
120 |
+
def get_hidden_states(self, request_id) -> Optional[torch.Tensor]:
|
121 |
+
with self.lock:
|
122 |
+
outputs = self.outputs.pop(request_id, None)
|
123 |
+
if outputs is not None:
|
124 |
+
outputs = torch.cat(outputs, dim=0)
|
125 |
+
return outputs
|
126 |
+
|
127 |
+
def bind_to_request(self, request_id: str):
|
128 |
+
def bound_collector(outputs: Optional[torch.Tensor], _request_id: str = None):
|
129 |
+
self(outputs, request_id)
|
130 |
+
return bound_collector
|
131 |
+
|
132 |
+
class ExtendedSamplingParams(SamplingParams, kw_only=True):
|
133 |
+
"""Extended sampling parameters that allows additional fields while maintaining compatibility with SamplingParams.
|
134 |
+
|
135 |
+
This class inherits from SamplingParams and allows adding new required fields
|
136 |
+
without conflicting with the base class's optional fields ordering.
|
137 |
+
"""
|
138 |
+
hidden_state_collector: HiddenStatesCollector # New required field
|
139 |
+
|
140 |
+
|
141 |
+
class LogitsRepetitionPenalizer:
|
142 |
+
"""A logits processor that applies repetition penalty to prevent repetitive text generation."""
|
143 |
+
|
144 |
+
def __init__(self, repetition_penalty: float):
|
145 |
+
if repetition_penalty < 0:
|
146 |
+
raise ValueError("Repetition penalty must be non-negative")
|
147 |
+
self.repetition_penalty = repetition_penalty
|
148 |
+
|
149 |
+
def __call__(self, token_ids: List[int], logits: torch.Tensor) -> torch.Tensor:
|
150 |
+
"""Apply repetition penalty to the logits based on previous tokens."""
|
151 |
+
# If no repetition penalty or no tokens to check, return original logits
|
152 |
+
if self.repetition_penalty == 1.0 or not token_ids:
|
153 |
+
return logits
|
154 |
+
|
155 |
+
# Create a mask for the repeated tokens
|
156 |
+
repeated_tokens = torch.tensor(token_ids,
|
157 |
+
device=logits.device,
|
158 |
+
dtype=torch.long)
|
159 |
+
|
160 |
+
# Get logits of repeated tokens
|
161 |
+
repeated_logits = logits[repeated_tokens]
|
162 |
+
|
163 |
+
# Apply penalty: divide positive logits by penalty, multiply negative logits by penalty
|
164 |
+
repeated_logits = torch.where(
|
165 |
+
repeated_logits > 0,
|
166 |
+
repeated_logits / self.repetition_penalty,
|
167 |
+
repeated_logits * self.repetition_penalty
|
168 |
+
)
|
169 |
+
|
170 |
+
# Update only the logits for repeated tokens
|
171 |
+
logits[repeated_tokens] = repeated_logits
|
172 |
+
|
173 |
+
return logits
|
174 |
+
|
175 |
+
|
176 |
+
@dataclass
|
177 |
+
class XTTSOutput:
|
178 |
+
"""Container for XTTS inference output with integrated audio utilities"""
|
179 |
+
request_id: str
|
180 |
+
wav: np.ndarray
|
181 |
+
sample_rate: int = 24000
|
182 |
+
|
183 |
+
def to_tensor(self) -> torch.Tensor:
|
184 |
+
"""Convert numpy array to torch tensor"""
|
185 |
+
if isinstance(self.wav, np.ndarray):
|
186 |
+
return torch.from_numpy(self.wav)
|
187 |
+
return self.wav
|
188 |
+
|
189 |
+
def to_bytes(self, format: str = 'wav', sample_width: int = 2) -> bytes:
|
190 |
+
"""Convert audio to bytes format.
|
191 |
+
|
192 |
+
Args:
|
193 |
+
format: Output format ('wav' or 'raw')
|
194 |
+
sample_width: Bit depth (1, 2, or 4 bytes per sample)
|
195 |
+
|
196 |
+
Returns:
|
197 |
+
Audio data as bytes
|
198 |
+
"""
|
199 |
+
# Convert to tensor if needed
|
200 |
+
wav_tensor = self.to_tensor()
|
201 |
+
|
202 |
+
# Ensure correct shape (1, N) for torchaudio
|
203 |
+
if wav_tensor.dim() == 1:
|
204 |
+
wav_tensor = wav_tensor.unsqueeze(0)
|
205 |
+
|
206 |
+
# Normalize to [-1, 1]
|
207 |
+
wav_tensor = torch.clamp(wav_tensor, -1.0, 1.0)
|
208 |
+
|
209 |
+
if format == 'wav':
|
210 |
+
buffer = io.BytesIO()
|
211 |
+
torchaudio.save(
|
212 |
+
buffer,
|
213 |
+
wav_tensor,
|
214 |
+
self.sample_rate,
|
215 |
+
format="wav",
|
216 |
+
encoding="PCM_S" if sample_width == 2 else "PCM_F",
|
217 |
+
bits_per_sample=sample_width * 8
|
218 |
+
)
|
219 |
+
return buffer.getvalue()
|
220 |
+
|
221 |
+
elif format == 'raw':
|
222 |
+
# Scale to appropriate range based on sample width
|
223 |
+
if sample_width == 2: # 16-bit
|
224 |
+
wav_tensor = (wav_tensor * 32767).to(torch.int16)
|
225 |
+
elif sample_width == 4: # 32-bit
|
226 |
+
wav_tensor = (wav_tensor * 2147483647).to(torch.int32)
|
227 |
+
else: # 8-bit
|
228 |
+
wav_tensor = (wav_tensor * 127).to(torch.int8)
|
229 |
+
return wav_tensor.cpu().numpy().tobytes()
|
230 |
+
|
231 |
+
else:
|
232 |
+
raise ValueError(f"Unsupported format: {format}")
|
233 |
+
|
234 |
+
def save(self,
|
235 |
+
filename: Union[str, Path],
|
236 |
+
sample_rate: Optional[int] = None,
|
237 |
+
format: Optional[str] = None) -> None:
|
238 |
+
"""Save audio to file.
|
239 |
+
|
240 |
+
Args:
|
241 |
+
filename: Output filename
|
242 |
+
sample_rate: Optional new sample rate for resampling
|
243 |
+
format: Optional format override (default: inferred from extension)
|
244 |
+
"""
|
245 |
+
wav_tensor = self.to_tensor()
|
246 |
+
if wav_tensor.dim() == 1:
|
247 |
+
wav_tensor = wav_tensor.unsqueeze(0)
|
248 |
+
|
249 |
+
# Resample if needed
|
250 |
+
if sample_rate and sample_rate != self.sample_rate:
|
251 |
+
wav_tensor = torchaudio.functional.resample(
|
252 |
+
wav_tensor,
|
253 |
+
orig_freq=self.sample_rate,
|
254 |
+
new_freq=sample_rate
|
255 |
+
)
|
256 |
+
else:
|
257 |
+
sample_rate = self.sample_rate
|
258 |
+
|
259 |
+
torchaudio.save(
|
260 |
+
filename,
|
261 |
+
wav_tensor,
|
262 |
+
sample_rate,
|
263 |
+
format=format
|
264 |
+
)
|
265 |
+
|
266 |
+
def resample(self, new_sample_rate: int) -> 'XTTSOutput':
|
267 |
+
"""Create new XTTSOutput with resampled audio.
|
268 |
+
|
269 |
+
Args:
|
270 |
+
new_sample_rate: Target sample rate
|
271 |
+
|
272 |
+
Returns:
|
273 |
+
New XTTSOutput instance with resampled audio
|
274 |
+
"""
|
275 |
+
wav_tensor = self.to_tensor()
|
276 |
+
if wav_tensor.dim() == 1:
|
277 |
+
wav_tensor = wav_tensor.unsqueeze(0)
|
278 |
+
|
279 |
+
resampled = torchaudio.functional.resample(
|
280 |
+
wav_tensor,
|
281 |
+
orig_freq=self.sample_rate,
|
282 |
+
new_freq=new_sample_rate
|
283 |
+
)
|
284 |
+
|
285 |
+
return XTTSOutput(
|
286 |
+
request_id=self.request_id,
|
287 |
+
wav=resampled.squeeze().numpy(),
|
288 |
+
sample_rate=new_sample_rate
|
289 |
+
)
|
290 |
+
|
291 |
+
def get_info(self) -> Tuple[int, int, float]:
|
292 |
+
"""Get audio information.
|
293 |
+
|
294 |
+
Returns:
|
295 |
+
Tuple of (number of samples, sample rate, duration in seconds)
|
296 |
+
"""
|
297 |
+
n_samples = len(self.wav)
|
298 |
+
duration = n_samples / self.sample_rate
|
299 |
+
return n_samples, self.sample_rate, duration
|
300 |
+
|
301 |
+
@classmethod
|
302 |
+
def from_tensor(cls, request_id: str, tensor: torch.Tensor, sample_rate: int = 24000) -> 'XTTSOutput':
|
303 |
+
"""Create XTTSOutput from torch tensor.
|
304 |
+
|
305 |
+
Args:
|
306 |
+
request_id: Request identifier
|
307 |
+
tensor: Audio tensor
|
308 |
+
sample_rate: Sample rate of the audio
|
309 |
+
|
310 |
+
Returns:
|
311 |
+
New XTTSOutput instance
|
312 |
+
"""
|
313 |
+
return cls(
|
314 |
+
request_id=request_id,
|
315 |
+
wav=tensor.squeeze().cpu().numpy(),
|
316 |
+
sample_rate=sample_rate
|
317 |
+
)
|
318 |
+
|
319 |
+
@classmethod
|
320 |
+
def from_file(cls, request_id: str, filename: Union[str, Path]) -> 'XTTSOutput':
|
321 |
+
"""Create XTTSOutput from audio file.
|
322 |
+
|
323 |
+
Args:
|
324 |
+
request_id: Request identifier
|
325 |
+
filename: Path to audio file
|
326 |
+
|
327 |
+
Returns:
|
328 |
+
New XTTSOutput instance
|
329 |
+
"""
|
330 |
+
wav_tensor, sample_rate = torchaudio.load(filename)
|
331 |
+
return cls.from_tensor(request_id, wav_tensor, sample_rate)
|
332 |
+
|
333 |
+
def play(self) -> None:
|
334 |
+
"""Play the audio through the default sound device.
|
335 |
+
For use in regular Python scripts/applications."""
|
336 |
+
# Ensure the audio is in the correct format
|
337 |
+
if isinstance(self.wav, torch.Tensor):
|
338 |
+
audio_data = self.wav.cpu().numpy()
|
339 |
+
else:
|
340 |
+
audio_data = self.wav
|
341 |
+
|
342 |
+
# Ensure float32 and normalize
|
343 |
+
if audio_data.dtype != np.float32:
|
344 |
+
audio_data = audio_data.astype(np.float32)
|
345 |
+
audio_data = np.clip(audio_data, -1.0, 1.0)
|
346 |
+
|
347 |
+
# Play the audio
|
348 |
+
sd.play(audio_data, self.sample_rate)
|
349 |
+
sd.wait() # Wait until the audio is finished playing
|
350 |
+
|
351 |
+
def display(self) -> Optional[Audio]:
|
352 |
+
"""Display audio player in Jupyter notebook.
|
353 |
+
Returns Audio widget if in notebook, None otherwise."""
|
354 |
+
try:
|
355 |
+
# Convert to bytes
|
356 |
+
audio_bytes = self.to_bytes(format='wav')
|
357 |
+
|
358 |
+
# Create and display audio widget
|
359 |
+
audio_widget = Audio(audio_bytes, rate=self.sample_rate, autoplay=False)
|
360 |
+
display(audio_widget)
|
361 |
+
return audio_widget
|
362 |
+
except Exception as e:
|
363 |
+
print(f"Could not display audio widget: {str(e)}")
|
364 |
+
print("Try using .play() method instead")
|
365 |
+
return None
|
366 |
+
|
367 |
+
def preview(self) -> None:
|
368 |
+
"""Smart play method that chooses appropriate playback method."""
|
369 |
+
try:
|
370 |
+
# Try notebook display first
|
371 |
+
if self.display() is None:
|
372 |
+
# Fall back to sounddevice if not in notebook
|
373 |
+
self.play()
|
374 |
+
except Exception as e:
|
375 |
+
print(f"Error playing audio: {str(e)}")
|
376 |
+
|
377 |
+
|
378 |
+
class Xtts(nn.Module):
|
379 |
+
"""Async XTTS model implementation using VLLM's AsyncEngine."""
|
380 |
+
|
381 |
+
def __init__(self, hifi_config: XTTSConfig, gpt_config: XTTSGPTConfig, tensor_parallel_size: int = 1, **kwargs):
|
382 |
+
super().__init__()
|
383 |
+
|
384 |
+
self.hifi_config = hifi_config
|
385 |
+
self.gpt_config = gpt_config
|
386 |
+
self.mel_bos_token_id = gpt_config.start_audio_token
|
387 |
+
self.mel_eos_token_id = gpt_config.stop_audio_token
|
388 |
+
self.tp = tensor_parallel_size
|
389 |
+
self.tokenizer = XTTSTokenizerFast.from_pretrained("AstraMindAI/xtts2-gpt")
|
390 |
+
self.request_counter = Counter()
|
391 |
+
self.executor = ThreadPoolExecutor(max_workers=4) # For CPU-bound tasks
|
392 |
+
self.hidden_states_collector = HiddenStatesCollector()
|
393 |
+
|
394 |
+
# Register buffer before creating modules
|
395 |
+
self.register_buffer("mel_stats", torch.ones(80))
|
396 |
+
|
397 |
+
# Initialize all nn.Module components
|
398 |
+
self.conditioning_encoder = ConditioningEncoder(
|
399 |
+
gpt_config.audio_config.mel_channels,
|
400 |
+
gpt_config.hidden_size,
|
401 |
+
num_attn_heads=gpt_config.num_attention_heads
|
402 |
+
)
|
403 |
+
|
404 |
+
self.text_embedding = nn.Embedding(
|
405 |
+
gpt_config.number_text_tokens,
|
406 |
+
gpt_config.hidden_size
|
407 |
+
)
|
408 |
+
|
409 |
+
self.text_pos_embedding = (
|
410 |
+
LearnedPositionEmbeddings(
|
411 |
+
gpt_config.max_text_tokens + 2,
|
412 |
+
gpt_config.hidden_size,
|
413 |
+
supports_pp=False
|
414 |
+
)
|
415 |
+
if gpt_config.max_audio_tokens != -1
|
416 |
+
else functools.partial(gpt_config.null_position_embeddings, dim=gpt_config.hidden_size)
|
417 |
+
)
|
418 |
+
|
419 |
+
if gpt_config.use_perceiver_resampler:
|
420 |
+
self.conditioning_perceiver = PerceiverResampler(
|
421 |
+
dim=gpt_config.hidden_size,
|
422 |
+
depth=2,
|
423 |
+
dim_context=gpt_config.hidden_size,
|
424 |
+
num_latents=32,
|
425 |
+
dim_head=64,
|
426 |
+
heads=8,
|
427 |
+
ff_mult=4,
|
428 |
+
use_flash_attn=False,
|
429 |
+
)
|
430 |
+
|
431 |
+
# Initialize HiFi-GAN decoder
|
432 |
+
self.hifigan_decoder = HifiDecoder(
|
433 |
+
input_sample_rate=self.hifi_config.input_sample_rate,
|
434 |
+
output_sample_rate=self.hifi_config.output_sample_rate,
|
435 |
+
output_hop_length=self.hifi_config.output_hop_length,
|
436 |
+
ar_mel_length_compression=self.hifi_config.gpt_code_stride_len,
|
437 |
+
decoder_input_dim=self.hifi_config.decoder_input_dim,
|
438 |
+
d_vector_dim=self.hifi_config.d_vector_dim,
|
439 |
+
cond_d_vector_in_each_upsampling_layer=self.hifi_config.cond_d_vector_in_each_upsampling_layer,
|
440 |
+
)
|
441 |
+
|
442 |
+
# Kept for model loading purposes
|
443 |
+
self.text_head = nn.Linear(gpt_config.hidden_size, gpt_config.number_text_tokens, bias=True)
|
444 |
+
self.final_norm = nn.LayerNorm(gpt_config.hidden_size, eps=1e-5, bias=True)
|
445 |
+
|
446 |
+
# Initialize VLLM engine at the end
|
447 |
+
self.init_vllm_engine()
|
448 |
+
|
449 |
+
# Semaphore for concurrency control
|
450 |
+
self.max_concurrency = 10
|
451 |
+
self.semaphore = asyncio.BoundedSemaphore(self.max_concurrency)
|
452 |
+
|
453 |
+
def half(self):
|
454 |
+
# We cannot permit downcasting since it will throw an error while padding
|
455 |
+
return
|
456 |
+
|
457 |
+
def to(self, *args, **kwargs):
|
458 |
+
# Block downcasting
|
459 |
+
dtype = kwargs.get('dtype', None)
|
460 |
+
if dtype == torch.float16 or dtype == torch.bfloat16:
|
461 |
+
kwargs['dtype'] = torch.float32
|
462 |
+
elif len(args) > 0 and (args[0] == torch.float16 or args[0] == torch.bfloat16):
|
463 |
+
args = list(args)
|
464 |
+
args[0] = torch.float32
|
465 |
+
args = tuple(args)
|
466 |
+
return super().to(*args, **kwargs)
|
467 |
+
|
468 |
+
@property
|
469 |
+
def device(self):
|
470 |
+
"""Get the current device of the model."""
|
471 |
+
return next(self.parameters()).device
|
472 |
+
|
473 |
+
@property
|
474 |
+
def dtype(self):
|
475 |
+
"""Get the current dtype of the model."""
|
476 |
+
return next(self.parameters()).dtype
|
477 |
+
|
478 |
+
@staticmethod
|
479 |
+
def get_memory_percentage(memory: int) -> float:
|
480 |
+
"""Get memory percentage."""
|
481 |
+
total_memory = torch.cuda.get_device_properties(0).total_memory
|
482 |
+
reserved_memory = torch.cuda.memory_reserved(0)
|
483 |
+
allocated_memory = torch.cuda.memory_allocated(0)
|
484 |
+
available_memory = total_memory - reserved_memory - allocated_memory
|
485 |
+
return memory / available_memory
|
486 |
+
|
487 |
+
def init_vllm_engine(self):
|
488 |
+
"""Initialize models with AsyncVLLMEngine."""
|
489 |
+
engine_args = AsyncEngineArgs(
|
490 |
+
model="AstraMindAI/xtts2-gpt",
|
491 |
+
tensor_parallel_size=self.tp,
|
492 |
+
dtype="auto",
|
493 |
+
disable_log_stats=True,
|
494 |
+
max_model_len=self.gpt_config.max_text_tokens + self.gpt_config.max_audio_tokens,
|
495 |
+
gpu_memory_utilization=self.get_memory_percentage(3 * 1024 ** 3),
|
496 |
+
trust_remote_code=True,
|
497 |
+
enforce_eager=True,
|
498 |
+
limit_mm_per_prompt={"audio": 1},
|
499 |
+
max_num_batched_tokens=7296,
|
500 |
+
)
|
501 |
+
|
502 |
+
self.llm_engine = AsyncLLMEngine.from_engine_args(engine_args)
|
503 |
+
|
504 |
+
@classmethod
|
505 |
+
def from_pretrained(
|
506 |
+
cls,
|
507 |
+
pretrained_model_name_or_path: str,
|
508 |
+
torch_dtype: torch.dtype = torch.float32,
|
509 |
+
device_map: Optional[str] = "auto",
|
510 |
+
tensor_parallel_size: int = 1,
|
511 |
+
**kwargs,
|
512 |
+
) -> "Xtts":
|
513 |
+
"""Load pretrained XTTS model from HuggingFace Hub."""
|
514 |
+
from huggingface_hub import hf_hub_download
|
515 |
+
import json
|
516 |
+
import os
|
517 |
+
|
518 |
+
# Download and load configs
|
519 |
+
if not os.path.exists(pretrained_model_name_or_path):
|
520 |
+
config_file = hf_hub_download(
|
521 |
+
repo_id=pretrained_model_name_or_path,
|
522 |
+
filename="config.json"
|
523 |
+
)
|
524 |
+
with open(config_file, 'r') as f:
|
525 |
+
config = json.load(f)
|
526 |
+
|
527 |
+
else:
|
528 |
+
# Load from local path
|
529 |
+
with open(os.path.join(pretrained_model_name_or_path, "config.json"), 'r') as f:
|
530 |
+
config = json.load(f)
|
531 |
+
|
532 |
+
# Initialize configs
|
533 |
+
gpt_config = XTTSGPTConfig(**config['gpt_config'])
|
534 |
+
hifi_config = XTTSConfig(**config)
|
535 |
+
|
536 |
+
# Initialize model
|
537 |
+
model = cls(
|
538 |
+
hifi_config=hifi_config,
|
539 |
+
gpt_config=gpt_config,
|
540 |
+
tensor_parallel_size=tensor_parallel_size,
|
541 |
+
**kwargs
|
542 |
+
)
|
543 |
+
|
544 |
+
# Load model weights
|
545 |
+
if not os.path.exists(pretrained_model_name_or_path):
|
546 |
+
hifigan_weights = hf_hub_download(
|
547 |
+
repo_id=pretrained_model_name_or_path,
|
548 |
+
filename="xtts-v2.safetensors"
|
549 |
+
)
|
550 |
+
else:
|
551 |
+
hifigan_weights = os.path.join(pretrained_model_name_or_path, "xtts-v2.safetensors")
|
552 |
+
|
553 |
+
import safetensors.torch
|
554 |
+
|
555 |
+
# Load HiFi-GAN weights
|
556 |
+
hifigan_state = safetensors.torch.load_file(hifigan_weights)
|
557 |
+
model.load_state_dict(hifigan_state)
|
558 |
+
|
559 |
+
# Set model properties
|
560 |
+
model.config = config
|
561 |
+
|
562 |
+
# Cast model to specified dtype
|
563 |
+
model = model.to(torch_dtype)
|
564 |
+
model = model.to('cuda')
|
565 |
+
|
566 |
+
return model
|
567 |
+
|
568 |
+
@staticmethod
|
569 |
+
def load_audio(audio_path: Union[str, Path], sampling_rate: int = 22050) -> torch.Tensor:
|
570 |
+
audio, lsr = torchaudio.load(audio_path)
|
571 |
+
|
572 |
+
# Stereo to mono if needed
|
573 |
+
if audio.size(0) != 1:
|
574 |
+
audio = torch.mean(audio, dim=0, keepdim=True)
|
575 |
+
|
576 |
+
if lsr != sampling_rate:
|
577 |
+
audio = torchaudio.functional.resample(audio, lsr, sampling_rate)
|
578 |
+
|
579 |
+
# Clip audio invalid values
|
580 |
+
audio.clip_(-1, 1)
|
581 |
+
return audio
|
582 |
+
|
583 |
+
@torch.inference_mode()
|
584 |
+
def get_speaker_embedding(self, audio, sr):
|
585 |
+
audio_16k = torchaudio.functional.resample(audio, sr, 16000)
|
586 |
+
return (
|
587 |
+
self.hifigan_decoder.speaker_encoder.forward(audio_16k.to(self.device), l2_norm=True)
|
588 |
+
.unsqueeze(-1)
|
589 |
+
.to(self.device)
|
590 |
+
)
|
591 |
+
|
592 |
+
@torch.inference_mode()
|
593 |
+
def get_gpt_cond_latents(self, audio, sr, length: int = 30, chunk_length: int = 6):
|
594 |
+
"""Compute the conditioning latents for the GPT model from the given audio."""
|
595 |
+
if sr != 22050:
|
596 |
+
audio = torchaudio.functional.resample(audio, sr, 22050)
|
597 |
+
if length > 0:
|
598 |
+
audio = audio[:, : 22050 * length]
|
599 |
+
if self.gpt_config.use_perceiver_resampler:
|
600 |
+
style_embs = []
|
601 |
+
for i in range(0, audio.shape[1], 22050 * chunk_length):
|
602 |
+
audio_chunk = audio[:, i: i + 22050 * chunk_length]
|
603 |
+
|
604 |
+
# if the chunk is too short ignore it
|
605 |
+
if audio_chunk.size(-1) < 22050 * 0.33:
|
606 |
+
continue
|
607 |
+
|
608 |
+
mel_chunk = wav_to_mel_cloning(
|
609 |
+
audio_chunk,
|
610 |
+
mel_norms=self.mel_stats.cpu(),
|
611 |
+
n_fft=2048,
|
612 |
+
hop_length=256,
|
613 |
+
win_length=1024,
|
614 |
+
power=2,
|
615 |
+
normalized=False,
|
616 |
+
sample_rate=22050,
|
617 |
+
f_min=0,
|
618 |
+
f_max=8000,
|
619 |
+
n_mels=80,
|
620 |
+
)
|
621 |
+
style_emb = self.get_style_emb(mel_chunk.to(self.device), None)
|
622 |
+
style_embs.append(style_emb)
|
623 |
+
|
624 |
+
# mean style embedding
|
625 |
+
cond_latent = torch.stack(style_embs).mean(dim=0)
|
626 |
+
else:
|
627 |
+
mel = wav_to_mel_cloning(
|
628 |
+
audio,
|
629 |
+
mel_norms=self.mel_stats.cpu(),
|
630 |
+
n_fft=4096,
|
631 |
+
hop_length=1024,
|
632 |
+
win_length=4096,
|
633 |
+
power=2,
|
634 |
+
normalized=False,
|
635 |
+
sample_rate=22050,
|
636 |
+
f_min=0,
|
637 |
+
f_max=8000,
|
638 |
+
n_mels=80,
|
639 |
+
)
|
640 |
+
cond_latent = self.get_style_emb(mel.to(self.device))
|
641 |
+
return cond_latent.transpose(1, 2)
|
642 |
+
|
643 |
+
@torch.inference_mode()
|
644 |
+
def get_conditioning_latents(
|
645 |
+
self,
|
646 |
+
audio_path,
|
647 |
+
max_ref_length=30,
|
648 |
+
gpt_cond_len=6,
|
649 |
+
gpt_cond_chunk_len=6,
|
650 |
+
librosa_trim_db=None,
|
651 |
+
sound_norm_refs=False,
|
652 |
+
load_sr=22050,
|
653 |
+
):
|
654 |
+
"""Get the conditioning latents for the GPT model from the given audio."""
|
655 |
+
# Deal with multiple references
|
656 |
+
assert isinstance(audio_path, str) or isinstance(audio_path, list), "audio_path must be a string or a list."
|
657 |
+
|
658 |
+
if not isinstance(audio_path, list):
|
659 |
+
audio_paths = [audio_path]
|
660 |
+
else:
|
661 |
+
audio_paths = audio_path
|
662 |
+
|
663 |
+
speaker_embeddings = []
|
664 |
+
audios = []
|
665 |
+
for file_path in audio_paths:
|
666 |
+
audio = load_audio(file_path, load_sr)
|
667 |
+
audio = audio[:, : load_sr * max_ref_length].to(self.device).to(self.dtype)
|
668 |
+
if sound_norm_refs:
|
669 |
+
audio = (audio / torch.abs(audio).max()) * 0.75
|
670 |
+
if librosa_trim_db is not None:
|
671 |
+
audio = librosa.effects.trim(audio, top_db=librosa_trim_db)[0]
|
672 |
+
|
673 |
+
# Compute latents for the decoder
|
674 |
+
speaker_embedding = self.get_speaker_embedding(audio, load_sr)
|
675 |
+
speaker_embeddings.append(speaker_embedding)
|
676 |
+
|
677 |
+
audios.append(audio)
|
678 |
+
|
679 |
+
# Merge all the audios and compute the latents for the GPT
|
680 |
+
full_audio = torch.cat(audios, dim=-1)
|
681 |
+
gpt_cond_latents = self.get_gpt_cond_latents(
|
682 |
+
full_audio, load_sr, length=gpt_cond_len, chunk_length=gpt_cond_chunk_len
|
683 |
+
) # [1, 1024, T]
|
684 |
+
|
685 |
+
speaker_embedding = torch.stack(speaker_embeddings)
|
686 |
+
speaker_embedding = speaker_embedding.mean(dim=0)
|
687 |
+
|
688 |
+
return gpt_cond_latents, speaker_embedding
|
689 |
+
|
690 |
+
def get_style_emb(self, cond_input: torch.Tensor, return_latent: bool = False) -> torch.Tensor:
|
691 |
+
"""Get conditioning embeddings from mel spectrograms."""
|
692 |
+
if not return_latent:
|
693 |
+
if cond_input.ndim == 4:
|
694 |
+
cond_input = cond_input.squeeze(1)
|
695 |
+
conds = self.conditioning_encoder(cond_input)
|
696 |
+
|
697 |
+
if hasattr(self, 'conditioning_perceiver'):
|
698 |
+
conds = self.conditioning_perceiver(
|
699 |
+
conds.permute(0, 2, 1)
|
700 |
+
).transpose(1, 2)
|
701 |
+
else:
|
702 |
+
conds = cond_input.unsqueeze(1)
|
703 |
+
return conds
|
704 |
+
|
705 |
+
async def prepare_text_tokens_async(self, text: str, language: str, split_text=False) \
|
706 |
+
-> Tuple[List[Union[int, List[int]]], List[torch.Tensor]]:
|
707 |
+
"""Prepare text tokens for the given text and language."""
|
708 |
+
|
709 |
+
async def elaborate_tokens(text_tokens: List[int]) -> torch.Tensor:
|
710 |
+
text_tokens.insert(0, self.tokenizer.bos_token_id)
|
711 |
+
text_tokens.append(self.tokenizer.eos_token_id)
|
712 |
+
return torch.tensor(text_tokens).unsqueeze(0).to(self.text_embedding.weight.device)
|
713 |
+
|
714 |
+
async def embed_tokens(text_tokens: Union[torch.Tensor, List[torch.Tensor]]) -> List[torch.Tensor]:
|
715 |
+
embeds = []
|
716 |
+
if isinstance(text_tokens, list):
|
717 |
+
for list_element in text_tokens:
|
718 |
+
embeds.append(self.text_embedding(list_element) + self.text_pos_embedding(list_element))
|
719 |
+
else:
|
720 |
+
embeds.append(self.text_embedding(text_tokens) + self.text_pos_embedding(text_tokens))
|
721 |
+
return embeds
|
722 |
+
|
723 |
+
fake_tokens_for_audio_generation = []
|
724 |
+
if split_text:
|
725 |
+
text_tokens = self.tokenizer.batch_encode_with_split(text, lang=[language])
|
726 |
+
for idx, text_token in enumerate(text_tokens):
|
727 |
+
text_tokens[idx] = await elaborate_tokens(text_token)
|
728 |
+
fake_tokens_for_audio_generation.append([1] * len(text_token))
|
729 |
+
else:
|
730 |
+
text_tokens = self.tokenizer.batch_encode(text, lang=[language])
|
731 |
+
text_tokens = await elaborate_tokens(text_tokens)
|
732 |
+
fake_tokens_for_audio_generation = [1] * len(text_tokens)
|
733 |
+
return fake_tokens_for_audio_generation, await embed_tokens(text_tokens)
|
734 |
+
|
735 |
+
async def prepare_inputs_async(self, text: str, language: str, speaker_file: Union[str, Path],
|
736 |
+
max_ref_length: int, gpt_cond_len: int, gpt_cond_chunk_len: int, split_text: bool) \
|
737 |
+
-> Tuple[List[List[int]], List[torch.Tensor], torch.Tensor]:
|
738 |
+
"""Prepare input text with conditioning tokens. Return combined conditioning latents"""
|
739 |
+
# Tokenize text based on the language
|
740 |
+
text_tokens, text_embeddings = await self.prepare_text_tokens_async(text, language, split_text)
|
741 |
+
|
742 |
+
# Load the speaker file and convert it to a tensor
|
743 |
+
gpt_cond_latent, speaker_embeddings = await self.get_conditioning_latents_async(
|
744 |
+
speaker_file,
|
745 |
+
max_ref_length,
|
746 |
+
gpt_cond_len,
|
747 |
+
gpt_cond_chunk_len
|
748 |
+
)
|
749 |
+
|
750 |
+
cond_latents = []
|
751 |
+
for text_embedding in text_embeddings:
|
752 |
+
# Concatenate along sequence dimension
|
753 |
+
cond_latents.append((torch.cat([gpt_cond_latent, text_embedding], dim=1).squeeze(0)
|
754 |
+
.to(self.llm_engine.engine.model_config.dtype)))
|
755 |
+
|
756 |
+
return text_tokens, cond_latents, speaker_embeddings
|
757 |
+
|
758 |
+
async def get_conditioning_latents_async(
|
759 |
+
self,
|
760 |
+
audio_path,
|
761 |
+
max_ref_length=30,
|
762 |
+
gpt_cond_len=6,
|
763 |
+
gpt_cond_chunk_len=6,
|
764 |
+
librosa_trim_db=None,
|
765 |
+
sound_norm_refs=False,
|
766 |
+
load_sr=22050,
|
767 |
+
):
|
768 |
+
"""Async version of get_conditioning_latents with concurrency control."""
|
769 |
+
async with self.semaphore:
|
770 |
+
# Run the original get_conditioning_latents in executor
|
771 |
+
result = await asyncio.get_event_loop().run_in_executor(
|
772 |
+
None,
|
773 |
+
functools.partial(self.get_conditioning_latents,
|
774 |
+
audio_path,
|
775 |
+
max_ref_length,
|
776 |
+
gpt_cond_len,
|
777 |
+
gpt_cond_chunk_len,
|
778 |
+
librosa_trim_db,
|
779 |
+
sound_norm_refs,
|
780 |
+
load_sr)
|
781 |
+
)
|
782 |
+
return result
|
783 |
+
|
784 |
+
async def get_model_logits(self, token_ids: List[int], conditioning: MultiModalDataDict) -> torch.Tensor:
|
785 |
+
"""Get model logits for a specific request"""
|
786 |
+
request_id = uuid.uuid4().hex
|
787 |
+
|
788 |
+
# Add start and end tokens
|
789 |
+
token_ids = [self.mel_bos_token_id] + token_ids + [self.mel_eos_token_id] * 5
|
790 |
+
|
791 |
+
engine_inputs = TokensPrompt(prompt_token_ids=token_ids)
|
792 |
+
engine_inputs["multi_modal_data"] = conditioning
|
793 |
+
|
794 |
+
# Bind the collector to this request
|
795 |
+
bound_collector = self.hidden_states_collector.bind_to_request(request_id)
|
796 |
+
|
797 |
+
# Set up sampling parameters with the bound collector
|
798 |
+
sampling_params = ExtendedSamplingParams(
|
799 |
+
detokenize=False,
|
800 |
+
max_tokens=1,
|
801 |
+
hidden_state_collector=bound_collector,
|
802 |
+
)
|
803 |
+
|
804 |
+
# Generate with unique request ID
|
805 |
+
generator = self.llm_engine.generate(
|
806 |
+
prompt=engine_inputs,
|
807 |
+
sampling_params=sampling_params,
|
808 |
+
request_id=request_id
|
809 |
+
)
|
810 |
+
|
811 |
+
# Consume the generator with a timeout
|
812 |
+
try:
|
813 |
+
async def consume_generator():
|
814 |
+
async for _ in generator:
|
815 |
+
pass
|
816 |
+
|
817 |
+
await asyncio.wait_for(consume_generator(), timeout=300)
|
818 |
+
except asyncio.TimeoutError:
|
819 |
+
raise RuntimeError("Timeout while generating logits")
|
820 |
+
|
821 |
+
# Get the collected hidden states
|
822 |
+
hidden_states = self.hidden_states_collector.get_hidden_states(request_id)
|
823 |
+
|
824 |
+
if hidden_states is None:
|
825 |
+
raise RuntimeError(f"No hidden states collected for request {request_id}")
|
826 |
+
|
827 |
+
return hidden_states[-len(token_ids):, ...].unsqueeze(0).to(self.device).to(self.dtype)
|
828 |
+
|
829 |
+
|
830 |
+
async def process_tokens_to_speech(
|
831 |
+
self,
|
832 |
+
generators: List[AsyncGenerator[RequestOutput, None]],
|
833 |
+
speaker_embeddings: torch.Tensor,
|
834 |
+
multimodal_data: List[torch.Tensor],
|
835 |
+
chunk_size: int = 20,
|
836 |
+
) -> AsyncGenerator[XTTSOutput, None]:
|
837 |
+
"""
|
838 |
+
Process multiple token generators concurrently and emit results sequentially.
|
839 |
+
Uses a queue-based approach to handle multiple generators reliably.
|
840 |
+
"""
|
841 |
+
# Create a queue for each generator to store its results
|
842 |
+
queues = [asyncio.Queue() for _ in generators]
|
843 |
+
|
844 |
+
# Create tasks for processing each generator
|
845 |
+
tasks = []
|
846 |
+
for i, generator in enumerate(generators):
|
847 |
+
task = asyncio.create_task(
|
848 |
+
self._process_single_generator(
|
849 |
+
generator,
|
850 |
+
queues[i],
|
851 |
+
speaker_embeddings,
|
852 |
+
multimodal_data[i],
|
853 |
+
chunk_size
|
854 |
+
)
|
855 |
+
)
|
856 |
+
tasks.append(task)
|
857 |
+
|
858 |
+
try:
|
859 |
+
# Process queues in sequence
|
860 |
+
for i, queue in enumerate(queues):
|
861 |
+
while True:
|
862 |
+
result = await queue.get()
|
863 |
+
if result is None:
|
864 |
+
# This generator has finished
|
865 |
+
break
|
866 |
+
else:
|
867 |
+
yield result
|
868 |
+
|
869 |
+
finally:
|
870 |
+
# Ensure all tasks are properly cleaned up
|
871 |
+
for task in tasks:
|
872 |
+
if not task.done():
|
873 |
+
task.cancel()
|
874 |
+
await asyncio.gather(*tasks, return_exceptions=True)
|
875 |
+
|
876 |
+
async def _process_single_generator(
|
877 |
+
self,
|
878 |
+
generator: AsyncGenerator[RequestOutput, None],
|
879 |
+
queue: asyncio.Queue,
|
880 |
+
speaker_embeddings: torch.Tensor,
|
881 |
+
gpt_embed_input: torch.Tensor,
|
882 |
+
chunk_size: int
|
883 |
+
) -> None:
|
884 |
+
"""Process a single generator and put results in its queue."""
|
885 |
+
try:
|
886 |
+
last_decoded_token = 0
|
887 |
+
accumulated_tokens = []
|
888 |
+
|
889 |
+
async for output in generator:
|
890 |
+
# Get new tokens
|
891 |
+
new_tokens = output.outputs[0].token_ids[last_decoded_token:]
|
892 |
+
accumulated_tokens.extend(new_tokens)
|
893 |
+
last_decoded_token = len(accumulated_tokens)
|
894 |
+
|
895 |
+
# Process tokens when we have enough or it's the final output
|
896 |
+
if output.finished:# or len(accumulated_tokens) >= chunk_size: se lascio con acculated token mi ripete gli stesis toke, why??
|
897 |
+
# Process the accumulated tokens
|
898 |
+
hidden_states = await self.get_model_logits(
|
899 |
+
accumulated_tokens,
|
900 |
+
{
|
901 |
+
"audio": {
|
902 |
+
'embeds': gpt_embed_input,
|
903 |
+
"is_logits_only_mode": True
|
904 |
+
}
|
905 |
+
}
|
906 |
+
)
|
907 |
+
|
908 |
+
# Generate audio segment
|
909 |
+
wav = await asyncio.get_event_loop().run_in_executor(
|
910 |
+
self.executor,
|
911 |
+
lambda: self.hifigan_decoder.inference(
|
912 |
+
hidden_states,
|
913 |
+
g=speaker_embeddings
|
914 |
+
).cpu().numpy().squeeze()
|
915 |
+
)
|
916 |
+
|
917 |
+
# Put result in queue
|
918 |
+
await queue.put(XTTSOutput(
|
919 |
+
request_id=output.request_id,
|
920 |
+
wav=wav
|
921 |
+
))
|
922 |
+
|
923 |
+
# Reset accumulated tokens
|
924 |
+
accumulated_tokens = []
|
925 |
+
|
926 |
+
if output.finished:
|
927 |
+
break
|
928 |
+
|
929 |
+
except Exception as e:
|
930 |
+
logging.error(f"Error in generator processing: {e}")
|
931 |
+
finally:
|
932 |
+
# Signal completion
|
933 |
+
await queue.put(None)
|
934 |
+
|
935 |
+
async def generate_speech_async_from_streaming_source(self, request: XTTSRequest) -> AsyncGenerator[XTTSOutput, None]:
|
936 |
+
"""Generate speech for streaming source of text, making a streaming source of audio tokens and then decoding
|
937 |
+
and returning a streaming audio response."""
|
938 |
+
assert isinstance(request.text, AsyncGenerator), "Text must be an AsyncGenerator for streaming source."
|
939 |
+
# Prepare input with conditioning
|
940 |
+
gpt_cond_latent, speaker_embeddings = await self.get_conditioning_latents_async(
|
941 |
+
request.speaker_file,
|
942 |
+
request.max_ref_length,
|
943 |
+
request.gpt_cond_len,
|
944 |
+
request.gpt_cond_chunk_len
|
945 |
+
)
|
946 |
+
sampling_params = SamplingParams(
|
947 |
+
temperature=request.temperature,
|
948 |
+
top_p=request.top_p,
|
949 |
+
detokenize=False,
|
950 |
+
top_k=request.top_k,
|
951 |
+
logits_processors=[LogitsRepetitionPenalizer(request.repetition_penalty)],
|
952 |
+
repetition_penalty=1.0, # Since we're handling repetition penalty manually
|
953 |
+
max_tokens=self.gpt_config.gpt_max_audio_tokens,
|
954 |
+
ignore_eos=True, # Ignore the tokenizer eos token since it is for textual generation
|
955 |
+
stop_token_ids=[self.mel_eos_token_id],
|
956 |
+
)
|
957 |
+
|
958 |
+
accumulated_text = ""
|
959 |
+
async for text in request.text:
|
960 |
+
text = text.strip()
|
961 |
+
accumulated_text += text
|
962 |
+
|
963 |
+
if len(accumulated_text) > request.generate_every_n_chars:
|
964 |
+
tokens, embeddings = await self.prepare_text_tokens_async(accumulated_text, request.language)
|
965 |
+
gpt_embed_input = [torch.cat([gpt_cond_latent, embeddings[0]], dim=0)]
|
966 |
+
|
967 |
+
engine_inputs = TokensPrompt(prompt_token_ids=tokens)
|
968 |
+
if gpt_embed_input is not None:
|
969 |
+
engine_inputs["multi_modal_data"] = {"audio": {"embeds": gpt_embed_input, "is_logits_only_mode": False}}
|
970 |
+
token_generator = [self.llm_engine.generate(
|
971 |
+
prompt=engine_inputs,
|
972 |
+
sampling_params=sampling_params,
|
973 |
+
request_id=request.request_id,
|
974 |
+
)]
|
975 |
+
# Process tokens to speech
|
976 |
+
async for output in self.process_tokens_to_speech(
|
977 |
+
token_generator,
|
978 |
+
speaker_embeddings,
|
979 |
+
gpt_embed_input,
|
980 |
+
chunk_size=50
|
981 |
+
):
|
982 |
+
yield output
|
983 |
+
|
984 |
+
accumulated_text = ""
|
985 |
+
|
986 |
+
async def generate_speech_from_text_async(self, request: XTTSRequest) -> AsyncGenerator[XTTSOutput, None]:
|
987 |
+
"""Generate speech for a single request asynchronously."""
|
988 |
+
# Prepare input with conditioning
|
989 |
+
tokens_list, gpt_embed_inputs, speaker_embeddings = await self.prepare_inputs_async(
|
990 |
+
request.text,
|
991 |
+
request.language,
|
992 |
+
request.speaker_file,
|
993 |
+
request.max_ref_length,
|
994 |
+
request.gpt_cond_len,
|
995 |
+
request.gpt_cond_chunk_len,
|
996 |
+
split_text=True # Split text to avoid OOM on big texts
|
997 |
+
)
|
998 |
+
|
999 |
+
# Start all requests in parallel
|
1000 |
+
generators = []
|
1001 |
+
for seq_index, sequence in enumerate(tokens_list):
|
1002 |
+
sampling_params = SamplingParams(
|
1003 |
+
temperature=request.temperature,
|
1004 |
+
top_p=request.top_p,
|
1005 |
+
detokenize=False,
|
1006 |
+
top_k=request.top_k,
|
1007 |
+
logits_processors=[LogitsRepetitionPenalizer(request.repetition_penalty)],
|
1008 |
+
repetition_penalty=1.0, # Since we're handling repetition penalty manually
|
1009 |
+
max_tokens=self.gpt_config.gpt_max_audio_tokens,
|
1010 |
+
ignore_eos=True, # Ignore the tokenizer eos token since it is for textual generation
|
1011 |
+
stop_token_ids=[self.mel_eos_token_id],
|
1012 |
+
)
|
1013 |
+
|
1014 |
+
engine_inputs = TokensPrompt(prompt_token_ids=sequence)
|
1015 |
+
if gpt_embed_inputs is not None:
|
1016 |
+
engine_inputs["multi_modal_data"] = {"audio": {"embeds": gpt_embed_inputs[seq_index], "is_logits_only_mode": False}}
|
1017 |
+
|
1018 |
+
# Get audio token generator from VLLM
|
1019 |
+
token_generator = self.llm_engine.generate(
|
1020 |
+
prompt=engine_inputs,
|
1021 |
+
sampling_params=sampling_params,
|
1022 |
+
request_id=f"{request.request_id}_{seq_index}",
|
1023 |
+
)
|
1024 |
+
generators.append(token_generator)
|
1025 |
+
|
1026 |
+
# Process tokens to speech
|
1027 |
+
async for output in self.process_tokens_to_speech(
|
1028 |
+
generators,
|
1029 |
+
speaker_embeddings,
|
1030 |
+
gpt_embed_inputs,
|
1031 |
+
chunk_size=50
|
1032 |
+
):
|
1033 |
+
yield output
|
1034 |
+
|
1035 |
+
def generate_speech_from_text(self, request: XTTSRequest) -> List[XTTSOutput]:
|
1036 |
+
"""
|
1037 |
+
Synchronous wrapper for generate_speech_from_text_async.
|
1038 |
+
|
1039 |
+
Args:
|
1040 |
+
request: XTTSRequest object containing generation parameters
|
1041 |
+
|
1042 |
+
Returns:
|
1043 |
+
List of XTTSOutput containing the generated speech segments
|
1044 |
+
"""
|
1045 |
+
|
1046 |
+
async def _collect_outputs():
|
1047 |
+
outputs = []
|
1048 |
+
async for output in self.generate_speech_from_text_async(request):
|
1049 |
+
outputs.append(output)
|
1050 |
+
return outputs
|
1051 |
+
|
1052 |
+
# Run the async code in an event loop
|
1053 |
+
import asyncio
|
1054 |
+
|
1055 |
+
# Get or create an event loop
|
1056 |
+
try:
|
1057 |
+
loop = asyncio.get_event_loop()
|
1058 |
+
except RuntimeError:
|
1059 |
+
loop = asyncio.new_event_loop()
|
1060 |
+
asyncio.set_event_loop(loop)
|
1061 |
+
|
1062 |
+
if loop.is_running():
|
1063 |
+
# Create a new loop if the current one is running
|
1064 |
+
new_loop = asyncio.new_event_loop()
|
1065 |
+
results = new_loop.run_until_complete(_collect_outputs())
|
1066 |
+
new_loop.close()
|
1067 |
+
else:
|
1068 |
+
results = loop.run_until_complete(_collect_outputs())
|
1069 |
+
|
1070 |
+
return results
|