File size: 6,037 Bytes
be881a4 6ead77d a84e2f3 be881a4 4466a94 e0d40ee be881a4 e0d40ee be881a4 a84e2f3 be881a4 a84e2f3 68853b7 a84e2f3 6ead77d e0d40ee 2be647f be9602a be881a4 a84e2f3 2be647f 26cb0ac 6ead77d e0d40ee 6ead77d e0d40ee 6ead77d a84e2f3 6ead77d a84e2f3 6ead77d d2a76eb 6ead77d a84e2f3 e0d40ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import torch
from PIL import Image
from io import BytesIO
from realesrgan import RealESRGANer
from typing import Dict, List, Any
import os
from pathlib import Path
from basicsr.archs.rrdbnet_arch import RRDBNet
import numpy as np
import cv2
import PIL
import boto3
import uuid, io
import torch
import base64
import requests
class EndpointHandler:
def __init__(self, path=""):
self.tiling_size = int(os.environ["TILING_SIZE"])
# Initialize the Real-ESRGAN model with specified parameters
self.model = RealESRGANer(
scale=4, # Scale factor for the model
# Path to the pre-trained model weights
model_path=f"/repository/weights/Real-ESRGAN-x4plus.pth",
# model_path=f"/workspace/real-esrgan/weights/Real-ESRGAN-x4plus.pth",
# Initialize the RRDBNet model architecture with specified parameters
model= RRDBNet(num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=4
),
tile=self.tiling_size,
tile_pad=0,
half=True,
)
# Initialize the S3 client with AWS credentials from environment variables
self.s3 = boto3.client('s3',
aws_access_key_id=os.environ['AWS_ACCESS_KEY_ID'],
aws_secret_access_key=os.environ['AWS_SECRET_ACCESS_KEY'],
)
# Get the S3 bucket name from environment variables
self.bucket_name = os.environ["S3_BUCKET_NAME"]
def __call__(self, data: Any) -> Dict[str, List[float]]:
try:
# get inputs
inputs = data.pop("inputs", data)
# get outscale
outscale = float(inputs.pop("outscale", 3))
# decode base64 image to PIL
image = self.download_image_url(inputs['image_url'])
in_size, in_mode = image.size, image.mode
# check image size and mode and return dict
assert in_mode in ["RGB", "RGBA", "L"], f"Unsupported image mode: {in_mode}"
if self.tiling_size == 0:
assert in_size[0] * in_size[1] < 1400*1400, f"Image is too large: {in_size}: {in_size[0] * in_size[1]} is greater than {self.tiling_size*self.tiling_size}"
assert outscale > 1 and outscale <=10, f"Outscale must be between 1 and 10: {outscale}"
# debug
print(f"image.size: {in_size}, image.mode: {in_mode}, outscale: {outscale}")
# Convert RGB to BGR (PIL uses RGB, OpenCV expects BGR)
opencv_image = np.array(image)
if in_mode == "RGB":
opencv_image = cv2.cvtColor(opencv_image, cv2.COLOR_RGB2BGR)
elif in_mode == "RGBA":
opencv_image = cv2.cvtColor(opencv_image, cv2.COLOR_RGBA2BGRA)
elif in_mode == "L":
opencv_image = cv2.cvtColor(opencv_image, cv2.COLOR_GRAY2RGB)
else:
raise ValueError(f"Unsupported image mode: {in_mode}")
# enhance image
output, _ = self.model.enhance(opencv_image, outscale=outscale)
# debug
print(f"output.shape: {output.shape}")
# convert to RGB/RGBA format
out_shape = output.shape
if len(out_shape) == 3:
if out_shape[2] == 3:
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
elif out_shape[2] == 4:
output = cv2.cvtColor(output, cv2.COLOR_BGRA2RGBA)
else:
output = cv2.cvtColor(output, cv2.COLOR_GRAY2RGB)
# convert to PIL image
img_byte_arr = BytesIO()
output = Image.fromarray(output)
# # save to BytesIO
# output.save(img_byte_arr, format='PNG')
# img_str = base64.b64encode(img_byte_arr.getvalue())
# img_str = img_str.decode()
image_url, key = self.upload_to_s3(output)
return {"image_url": image_url,
"image_key": key,
"error": None
}
# handle errors
except AssertionError as e:
print(f"AssertionError: {e}")
return {"out_image": None, "error": str(e)}
except KeyError as e:
print(f"KeyError: {e}")
return {"out_image": None, "error": f"Missing key: {e}"}
except ValueError as e:
print(f"ValueError: {e}")
return {"out_image": None, "error": str(e)}
except PIL.UnidentifiedImageError as e:
print(f"PIL.UnidentifiedImageError: {e}")
return {"out_image": None, "error": "Invalid image format"}
except Exception as e:
print(f"Exception: {e}")
return {"out_image": None, "error": "An unexpected error occurred"}
def upload_to_s3(self, image):
"Upload the image to s3 and return the url."
prefix = str(uuid.uuid4())
# Save the image to an in-memory file
in_mem_file = io.BytesIO()
image.save(in_mem_file, 'PNG')
in_mem_file.seek(0)
# Upload the image to s3
key = f"{prefix}.png"
self.s3.upload_fileobj(in_mem_file, Bucket=self.bucket_name, Key=key)
image_url = "https://{0}.s3.amazonaws.com/{1}".format(self.bucket_name, key)
# return the url and the key
return image_url, key
def download_image_url(self, image_url):
"Download the image from the url and return the image."
response = requests.get(image_url)
image = Image.open(BytesIO(response.content))
return image |