--- base_model: stabilityai/stable-diffusion-2-base library_name: diffusers license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training inference: true --- # Text-to-image finetuning - jffacevedo/pxla_trained_model This pipeline was finetuned from **stabilityai/stable-diffusion-2-base** on the **lambdalabs/naruto-blip-captions** dataset. ## Pipeline usage You can use the pipeline like so: ```python import torch import os import sys import numpy as np import torch_xla.core.xla_model as xm from time import time from typing import Tuple from diffusers import StableDiffusionPipeline def main(args): device = xm.xla_device() model_path = pipe = StableDiffusionPipeline.from_pretrained( model_path, torch_dtype=torch.bfloat16 ) pipe.to(device) prompt = ["A naruto with green eyes and red legs."] image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5).images[0] image.save("naruto.png") if __name__ == '__main__': main() ``` ## Training info These are the key hyperparameters used during training: * Steps: 50 * Learning rate: 1e-06 * Batch size: 32 * Image resolution: 512 * Mixed-precision: bf16 ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]