File size: 2,537 Bytes
7daf929
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
library_name: peft
license: other
base_model: microsoft/Phi-3-mini-4k-instruct
tags:
- llama-factory
- lora
- generated_from_trainer
model-index:
- name: lora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lora

This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on the flock_task4_tranning dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1386

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- total_eval_batch_size: 2
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.047         | 0.0501 | 50   | 1.2594          |
| 1.027         | 0.1002 | 100  | 1.2322          |
| 0.916         | 0.1502 | 150  | 1.2325          |
| 0.995         | 0.2003 | 200  | 1.2030          |
| 0.981         | 0.2504 | 250  | 1.1924          |
| 0.9663        | 0.3005 | 300  | 1.1807          |
| 0.8533        | 0.3505 | 350  | 1.1778          |
| 0.9052        | 0.4006 | 400  | 1.1744          |
| 0.9526        | 0.4507 | 450  | 1.1691          |
| 0.8949        | 0.5008 | 500  | 1.1603          |
| 0.8881        | 0.5508 | 550  | 1.1526          |
| 0.9001        | 0.6009 | 600  | 1.1503          |
| 0.8708        | 0.6510 | 650  | 1.1502          |
| 0.8791        | 0.7011 | 700  | 1.1403          |
| 0.9239        | 0.7511 | 750  | 1.1463          |
| 0.8726        | 0.8012 | 800  | 1.1400          |
| 0.8509        | 0.8513 | 850  | 1.1403          |
| 0.8615        | 0.9014 | 900  | 1.1386          |
| 0.9553        | 0.9514 | 950  | 1.1384          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0