--- library_name: transformers tags: - torchao - phi - phi4 - nlp - code - math - chat - conversational license: mit language: - multilingual base_model: - microsoft/Phi-4-mini-instruct pipeline_tag: text-generation --- [Phi4-mini](https://huggingface.co/microsoft/Phi-4-mini-instruct) model quantized with [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao) int4 weight only quantization with gemlite kernels, by PyTorch team. # Installation ``` pip install transformers pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126 pip install git@github.com:EleutherAI/lm-evaluation-harness.git pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly pip install git+https://github.com/mobiusml/gemlite/ ``` # Quantization Recipe We used following code to get the quantized model: ``` import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig model_id = "microsoft/Phi-4-mini-instruct" from torchao.quantization import GemliteUIntXWeightOnlyConfig quant_config = GemliteUIntXWeightOnlyConfig() quantization_config = TorchAoConfig(quant_type=quant_config) quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.float16, quantization_config=quantization_config) tokenizer = AutoTokenizer.from_pretrained(model_id) # Push to hub USER_ID = "YOUR_USER_ID" save_to = f"{USER_ID}/{model_id}-int4wo-gemlite" quantized_model.push_to_hub(save_to, safe_serialization=False) tokenizer.push_to_hub(save_to) # Manual Testing prompt = "Hey, are you conscious? Can you talk to me?" inputs = tokenizer(prompt, return_tensors="pt").to("cuda") generated_ids = quantized_model.generate(**inputs, max_new_tokens=128) output_text = tokenizer.batch_decode( generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_text) # Local Benchmark import torch.utils.benchmark as benchmark from torchao.utils import benchmark_model import torchao def benchmark_fn(f, *args, **kwargs): # Manual warmup for _ in range(2): f(*args, **kwargs) t0 = benchmark.Timer( stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f}, num_threads=torch.get_num_threads(), ) return f"{(t0.blocked_autorange().mean):.3f}" torchao.quantization.utils.recommended_inductor_config_setter() quantized_model = torch.compile(quantized_model, mode="max-autotune") print(f"{save_to} model:", benchmark_fn(quantized_model.generate, **inputs, max_new_tokens=128)) ``` # Model Quality We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model. ## Installing the nightly version to get most recent updates ``` pip install git+https://github.com/EleutherAI/lm-evaluation-harness ``` ## baseline ``` lm_eval --model hf --model_args pretrained=microsoft/Phi-4-mini-instruct --tasks hellaswag --device cuda:0 --batch_size 8 ``` ## int4wo-gemlite ``` lm_eval --model hf --model_args pretrained=jerryzh168/phi4-mini-int4wo-gemlite --tasks hellaswag --device cuda:0 --batch_size 8 ``` `TODO: more complete eval results` | Benchmark | | | |----------------------------------|-------------|-------------------| | | Phi-4 mini-Ins | phi4-mini-int4wo-gemlite | | **Popular aggregated benchmark** | | | | **Reasoning** | | | | HellaSwag | 54.57 | 53.51 | | **Multilingual** | | | | **Math** | | | | **Overall** | **TODO** | **TODO** | # Model Performance Our int4wo is only optimized for batch size 1, so we'll only benchmark the batch size 1 performance with vllm. For batch size N, please see our [gemlite checkpoint](https://huggingface.co/jerryzh168/phi4-mini-int4wo-gemlite). ## Download vllm source code and install vllm ``` git clone git@github.com:vllm-project/vllm.git VLLM_USE_PRECOMPILED=1 pip install . ``` ## Download dataset Download sharegpt dataset: `wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json` Other datasets can be found in: https://github.com/vllm-project/vllm/tree/main/benchmarks ## benchmark_latency Run the following under `vllm` source code root folder: ### baseline ``` python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model microsoft/Phi-4-mini-instruct --batch-size 1 ``` ### int4wo-gemlite ``` python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model jerryzh168/phi4-mini-int4wo-gemlite --batch-size 1 ``` ## benchmark_serving We also benchmarked the throughput in a serving environment. Run the following under `vllm` source code root folder: ### baseline Server: ``` vllm serve microsoft/Phi-4-mini-instruct --tokenizer microsoft/Phi-4-mini-instruct -O3 ``` Client: ``` python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model microsoft/Phi-4-mini-instruct --num-prompts 1 ``` ### int4wo-gemlite Server: ``` vllm serve jerryzh168/phi4-mini-int4wo-gemlite --tokenizer microsoft/Phi-4-mini-instruct -O3 ``` Client: ``` python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model jerryzh168/phi4-mini-int4wo-hqq --num-prompts 1 ``` # Serving with vllm We can use the same command we used in serving benchmarks to serve the model with vllm ``` vllm serve jerryzh168/phi4-mini-int4wo-gemlite --tokenizer microsoft/Phi-4-mini-instruct -O3 ```