Commit
·
0b9b526
1
Parent(s):
9255a1b
Update model
Browse files- .ipynb_checkpoints/README-checkpoint.md +129 -0
- 1_Pooling/config.json +1 -1
- README.md +7 -7
- pytorch_model.bin +1 -1
.ipynb_checkpoints/README-checkpoint.md
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- transformers
|
8 |
+
---
|
9 |
+
|
10 |
+
# bert-base-dutch-cased-snli
|
11 |
+
|
12 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
+
|
14 |
+
<!--- Describe your model here -->
|
15 |
+
|
16 |
+
## Usage (Sentence-Transformers)
|
17 |
+
|
18 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
19 |
+
|
20 |
+
```
|
21 |
+
pip install -U sentence-transformers
|
22 |
+
```
|
23 |
+
|
24 |
+
Then you can use the model like this:
|
25 |
+
|
26 |
+
```python
|
27 |
+
from sentence_transformers import SentenceTransformer
|
28 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
29 |
+
|
30 |
+
model = SentenceTransformer('bert-base-dutch-cased-snli')
|
31 |
+
embeddings = model.encode(sentences)
|
32 |
+
print(embeddings)
|
33 |
+
```
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
## Usage (HuggingFace Transformers)
|
38 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
39 |
+
|
40 |
+
```python
|
41 |
+
from transformers import AutoTokenizer, AutoModel
|
42 |
+
import torch
|
43 |
+
|
44 |
+
|
45 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
46 |
+
def mean_pooling(model_output, attention_mask):
|
47 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
48 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
49 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
50 |
+
|
51 |
+
|
52 |
+
# Sentences we want sentence embeddings for
|
53 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
54 |
+
|
55 |
+
# Load model from HuggingFace Hub
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained('bert-base-dutch-cased-snli')
|
57 |
+
model = AutoModel.from_pretrained('bert-base-dutch-cased-snli')
|
58 |
+
|
59 |
+
# Tokenize sentences
|
60 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
61 |
+
|
62 |
+
# Compute token embeddings
|
63 |
+
with torch.no_grad():
|
64 |
+
model_output = model(**encoded_input)
|
65 |
+
|
66 |
+
# Perform pooling. In this case, max pooling.
|
67 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
68 |
+
|
69 |
+
print("Sentence embeddings:")
|
70 |
+
print(sentence_embeddings)
|
71 |
+
```
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
## Evaluation Results
|
76 |
+
|
77 |
+
Top-5 accuracy: 72%
|
78 |
+
|
79 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=bert-base-dutch-cased-snli)
|
80 |
+
|
81 |
+
|
82 |
+
## Training
|
83 |
+
The model was trained with the parameters:
|
84 |
+
|
85 |
+
**DataLoader**:
|
86 |
+
|
87 |
+
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 4209 with parameters:
|
88 |
+
```
|
89 |
+
{'batch_size': 64}
|
90 |
+
```
|
91 |
+
|
92 |
+
**Loss**:
|
93 |
+
|
94 |
+
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
|
95 |
+
```
|
96 |
+
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
|
97 |
+
```
|
98 |
+
|
99 |
+
Parameters of the fit()-Method:
|
100 |
+
```
|
101 |
+
{
|
102 |
+
"callback": null,
|
103 |
+
"epochs": 1,
|
104 |
+
"evaluation_steps": 0,
|
105 |
+
"evaluator": "__main__.SnliEvaluator",
|
106 |
+
"max_grad_norm": 1,
|
107 |
+
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
108 |
+
"optimizer_params": {
|
109 |
+
"lr": 3e-05
|
110 |
+
},
|
111 |
+
"scheduler": "WarmupLinear",
|
112 |
+
"steps_per_epoch": null,
|
113 |
+
"warmup_steps": 842,
|
114 |
+
"weight_decay": 0.01
|
115 |
+
}
|
116 |
+
```
|
117 |
+
|
118 |
+
|
119 |
+
## Full Model Architecture
|
120 |
+
```
|
121 |
+
SentenceTransformer(
|
122 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
123 |
+
(1): Pooling({'word_embedding_dimension': 256, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
124 |
+
)
|
125 |
+
```
|
126 |
+
|
127 |
+
## Citing & Authors
|
128 |
+
|
129 |
+
<!--- Describe where people can find more information -->
|
1_Pooling/config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"word_embedding_dimension":
|
3 |
"pooling_mode_cls_token": false,
|
4 |
"pooling_mode_mean_tokens": true,
|
5 |
"pooling_mode_max_tokens": false,
|
|
|
1 |
{
|
2 |
+
"word_embedding_dimension": 256,
|
3 |
"pooling_mode_cls_token": false,
|
4 |
"pooling_mode_mean_tokens": true,
|
5 |
"pooling_mode_max_tokens": false,
|
README.md
CHANGED
@@ -9,7 +9,7 @@ tags:
|
|
9 |
|
10 |
# bert-base-dutch-cased-snli
|
11 |
|
12 |
-
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a
|
13 |
|
14 |
<!--- Describe your model here -->
|
15 |
|
@@ -74,7 +74,7 @@ print(sentence_embeddings)
|
|
74 |
|
75 |
## Evaluation Results
|
76 |
|
77 |
-
|
78 |
|
79 |
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=bert-base-dutch-cased-snli)
|
80 |
|
@@ -84,9 +84,9 @@ The model was trained with the parameters:
|
|
84 |
|
85 |
**DataLoader**:
|
86 |
|
87 |
-
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length
|
88 |
```
|
89 |
-
{'batch_size':
|
90 |
```
|
91 |
|
92 |
**Loss**:
|
@@ -106,11 +106,11 @@ Parameters of the fit()-Method:
|
|
106 |
"max_grad_norm": 1,
|
107 |
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
108 |
"optimizer_params": {
|
109 |
-
"lr":
|
110 |
},
|
111 |
"scheduler": "WarmupLinear",
|
112 |
"steps_per_epoch": null,
|
113 |
-
"warmup_steps":
|
114 |
"weight_decay": 0.01
|
115 |
}
|
116 |
```
|
@@ -120,7 +120,7 @@ Parameters of the fit()-Method:
|
|
120 |
```
|
121 |
SentenceTransformer(
|
122 |
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
123 |
-
(1): Pooling({'word_embedding_dimension':
|
124 |
)
|
125 |
```
|
126 |
|
|
|
9 |
|
10 |
# bert-base-dutch-cased-snli
|
11 |
|
12 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
|
14 |
<!--- Describe your model here -->
|
15 |
|
|
|
74 |
|
75 |
## Evaluation Results
|
76 |
|
77 |
+
Top-5 accuracy: 72%
|
78 |
|
79 |
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=bert-base-dutch-cased-snli)
|
80 |
|
|
|
84 |
|
85 |
**DataLoader**:
|
86 |
|
87 |
+
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 4209 with parameters:
|
88 |
```
|
89 |
+
{'batch_size': 64}
|
90 |
```
|
91 |
|
92 |
**Loss**:
|
|
|
106 |
"max_grad_norm": 1,
|
107 |
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
108 |
"optimizer_params": {
|
109 |
+
"lr": 3e-05
|
110 |
},
|
111 |
"scheduler": "WarmupLinear",
|
112 |
"steps_per_epoch": null,
|
113 |
+
"warmup_steps": 842,
|
114 |
"weight_decay": 0.01
|
115 |
}
|
116 |
```
|
|
|
120 |
```
|
121 |
SentenceTransformer(
|
122 |
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
123 |
+
(1): Pooling({'word_embedding_dimension': 256, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
124 |
)
|
125 |
```
|
126 |
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 436630961
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c8d40bc37b065dd12dd79b03a24f96971575e494f1fee1dbb12c9b488a45600
|
3 |
size 436630961
|