--- library_name: peft language: - multilingual license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Turbo Multilingual (ko, ja, zh, en) results: [] --- # Whisper Turbo Multilingual (ko, ja, zh, en) This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the custom_multilingual dataset. It achieves the following results on the evaluation set: - Loss: 0.3434 - Wer: 25.3086 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.6956 | 0.1754 | 10 | 0.4175 | 32.7160 | | 0.2372 | 0.3509 | 20 | 0.3434 | 25.3086 | ### Framework versions - PEFT 0.15.2.dev0 - Transformers 4.46.3 - Pytorch 2.3.1+cu121 - Datasets 3.0.0 - Tokenizers 0.20.3