--- library_name: peft language: - multilingual license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Turbo Multilingual (ko, ja, zh, en) results: [] --- # Whisper Turbo Multilingual (ko, ja, zh, en) This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the custom_multilingual dataset. It achieves the following results on the evaluation set: - Loss: 0.3860 - Wer: 15.9354 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.3244 | 1.0971 | 500 | 0.3557 | 19.6171 | | 0.2701 | 2.1942 | 1000 | 0.3490 | 19.5934 | | 0.224 | 3.2913 | 1500 | 0.3503 | 17.5891 | | 0.2132 | 4.3884 | 2000 | 0.3518 | 16.9210 | | 0.1865 | 5.4855 | 2500 | 0.3571 | 16.2908 | | 0.1661 | 6.5826 | 3000 | 0.3652 | 16.0491 | | 0.1467 | 7.6796 | 3500 | 0.3692 | 16.4471 | | 0.136 | 8.7767 | 4000 | 0.3762 | 15.9496 | | 0.1229 | 9.8738 | 4500 | 0.3816 | 15.8453 | | 0.1146 | 10.9709 | 5000 | 0.3860 | 15.9354 | ### Framework versions - PEFT 0.15.2.dev0 - Transformers 4.46.3 - Pytorch 2.3.1+cu121 - Datasets 3.0.0 - Tokenizers 0.20.3