--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5391 - Accuracy: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1051 | 1.0 | 113 | 2.1497 | 0.37 | | 1.8425 | 2.0 | 226 | 1.8414 | 0.51 | | 1.529 | 3.0 | 339 | 1.4372 | 0.64 | | 1.1083 | 4.0 | 452 | 1.1113 | 0.74 | | 0.8602 | 5.0 | 565 | 0.8216 | 0.79 | | 0.5928 | 6.0 | 678 | 0.7559 | 0.77 | | 0.3821 | 7.0 | 791 | 0.6388 | 0.81 | | 0.4732 | 8.0 | 904 | 0.5476 | 0.86 | | 0.303 | 9.0 | 1017 | 0.5160 | 0.9 | | 0.3458 | 10.0 | 1130 | 0.5391 | 0.87 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3