File size: 8,029 Bytes
9697027
ddededf
9697027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddededf
9697027
 
 
 
 
 
 
 
 
 
ddededf
9697027
 
 
ddededf
9697027
ddededf
9697027
 
 
 
 
 
 
 
 
 
ddededf
9697027
ddededf
9697027
 
 
 
 
 
 
 
 
 
 
 
ddededf
 
 
 
 
 
9697027
 
 
 
 
 
ddededf
9697027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51fdf36
9697027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddededf
 
 
9697027
 
 
ddededf
 
 
 
9697027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddededf
 
 
9697027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
---
base_model: BAAI/bge-m3
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: W elementach regału brakuje kilku otworów montażowych, uniemożliwiających
    prawidłowe złożenie.
- text: Półki regału Biblioteka  zbyt wąskie.
- text: Łóżko drewniane posiada wadę konstrukcji.
- text: Noga krzesła drewnianego Country jest złamana.
- text: Konstrukcja łóżka piętrowego jest wadliwa, elementy nie pasują do siebie.
inference: true
model-index:
- name: SetFit with BAAI/bge-m3
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.8632478632478633
      name: Accuracy
---

# SetFit with BAAI/bge-m3

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 8192 tokens
- **Number of Classes:** 4 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label                            | Examples                                                                                                                                                                                                                                                                                                             |
|:---------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| błędny montaż                    | <ul><li>'Pojemnik pod łóżkiem jest źle zamontowany i nie otwiera się.'</li><li>'Nogi komody nowoczesnej są źle przymocowane i komoda jest niestabilna.'</li><li>'Oświetlenie w witrynie z oświetleniem jest źle podłączone i nie działa.'</li></ul>                                                                  |
| wady fabryczne                   | <ul><li>'Front szafki RTV jest uszkodzony, posiada wgniecenie i rysę.'</li><li>'Tapicerka krzesła jest rozdarcia.'</li><li>'Blat biurka narożnego ma pęknięcie, widoczne gołym okiem.'</li></ul>                                                                                                                     |
| niezgodność towaru z zamówieniem | <ul><li>'Materiał szafy Prosty jest inny niż ten, który został zamówiony.'</li><li>'Regał narożny ma inne wymiary niż te, które zostały podane w zamówieniu.'</li><li>'Zamówiony fotel bujany miał zawierać poduszkę, której nie ma w przesyłce. Potwierdzenie zamówienia wskazuje na dołączoną poduszkę.'</li></ul> |
| uszkodzenia                      | <ul><li>'Szyba stolika kawowego Minimal jest pęknięta.'</li><li>'Prowadnice szuflad w szafie wnękowej Max są uszkodzone.'</li><li>'Drzwiczki szafy na buty Shoes są uszkodzone.'</li></ul>                                                                                                                           |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.8632   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("janmariakowalski/LiderzyAI-homestyle-reklamacje")
# Run inference
preds = model("Półki regału Biblioteka są zbyt wąskie.")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 4   | 10.0   | 20  |

| Label                            | Training Sample Count |
|:---------------------------------|:----------------------|
| uszkodzenia                      | 8                     |
| wady fabryczne                   | 8                     |
| niezgodność towaru z zamówieniem | 8                     |
| błędny montaż                    | 8                     |

### Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0417 | 1    | 0.1938        | -               |
| 4.1667 | 100  | 0.0392        | -               |
| 8.3333 | 200  | 0.0011        | -               |

### Framework Versions
- Python: 3.11.0
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.4.1
- Datasets: 2.19.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->