jangikim commited on
Commit
53585cd
·
verified ·
1 Parent(s): 98e8582

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,496 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:557850
11
+ - loss:MultipleNegativesRankingLoss
12
+ base_model: microsoft/mpnet-base
13
+ widget:
14
+ - source_sentence: A man is jumping unto his filthy bed.
15
+ sentences:
16
+ - A young male is looking at a newspaper while 2 females walks past him.
17
+ - The bed is dirty.
18
+ - The man is on the moon.
19
+ - source_sentence: A carefully balanced male stands on one foot near a clean ocean
20
+ beach area.
21
+ sentences:
22
+ - A man is ouside near the beach.
23
+ - Three policemen patrol the streets on bikes
24
+ - A man is sitting on his couch.
25
+ - source_sentence: The man is wearing a blue shirt.
26
+ sentences:
27
+ - Near the trashcan the man stood and smoked
28
+ - A man in a blue shirt leans on a wall beside a road with a blue van and red car
29
+ with water in the background.
30
+ - A man in a black shirt is playing a guitar.
31
+ - source_sentence: The girls are outdoors.
32
+ sentences:
33
+ - Two girls riding on an amusement part ride.
34
+ - a guy laughs while doing laundry
35
+ - Three girls are standing together in a room, one is listening, one is writing
36
+ on a wall and the third is talking to them.
37
+ - source_sentence: A construction worker peeking out of a manhole while his coworker
38
+ sits on the sidewalk smiling.
39
+ sentences:
40
+ - A worker is looking out of a manhole.
41
+ - A man is giving a presentation.
42
+ - The workers are both inside the manhole.
43
+ datasets:
44
+ - sentence-transformers/all-nli
45
+ pipeline_tag: sentence-similarity
46
+ library_name: sentence-transformers
47
+ metrics:
48
+ - cosine_accuracy
49
+ model-index:
50
+ - name: MPNet base trained on AllNLI triplets
51
+ results:
52
+ - task:
53
+ type: triplet
54
+ name: Triplet
55
+ dataset:
56
+ name: all nli dev
57
+ type: all-nli-dev
58
+ metrics:
59
+ - type: cosine_accuracy
60
+ value: 0.903857837181045
61
+ name: Cosine Accuracy
62
+ - task:
63
+ type: triplet
64
+ name: Triplet
65
+ dataset:
66
+ name: all nli test
67
+ type: all-nli-test
68
+ metrics:
69
+ - type: cosine_accuracy
70
+ value: 0.9154183688909063
71
+ name: Cosine Accuracy
72
+ ---
73
+
74
+ # MPNet base trained on AllNLI triplets
75
+
76
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
77
+
78
+ ## Model Details
79
+
80
+ ### Model Description
81
+ - **Model Type:** Sentence Transformer
82
+ - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
83
+ - **Maximum Sequence Length:** 512 tokens
84
+ - **Output Dimensionality:** 768 dimensions
85
+ - **Similarity Function:** Cosine Similarity
86
+ - **Training Dataset:**
87
+ - [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
88
+ - **Language:** en
89
+ - **License:** apache-2.0
90
+
91
+ ### Model Sources
92
+
93
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
94
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
95
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
96
+
97
+ ### Full Model Architecture
98
+
99
+ ```
100
+ SentenceTransformer(
101
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
102
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
103
+ )
104
+ ```
105
+
106
+ ## Usage
107
+
108
+ ### Direct Usage (Sentence Transformers)
109
+
110
+ First install the Sentence Transformers library:
111
+
112
+ ```bash
113
+ pip install -U sentence-transformers
114
+ ```
115
+
116
+ Then you can load this model and run inference.
117
+ ```python
118
+ from sentence_transformers import SentenceTransformer
119
+
120
+ # Download from the 🤗 Hub
121
+ model = SentenceTransformer("jangikim/mpnet-base-all-nli-triplet")
122
+ # Run inference
123
+ sentences = [
124
+ 'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
125
+ 'A worker is looking out of a manhole.',
126
+ 'The workers are both inside the manhole.',
127
+ ]
128
+ embeddings = model.encode(sentences)
129
+ print(embeddings.shape)
130
+ # [3, 768]
131
+
132
+ # Get the similarity scores for the embeddings
133
+ similarities = model.similarity(embeddings, embeddings)
134
+ print(similarities.shape)
135
+ # [3, 3]
136
+ ```
137
+
138
+ <!--
139
+ ### Direct Usage (Transformers)
140
+
141
+ <details><summary>Click to see the direct usage in Transformers</summary>
142
+
143
+ </details>
144
+ -->
145
+
146
+ <!--
147
+ ### Downstream Usage (Sentence Transformers)
148
+
149
+ You can finetune this model on your own dataset.
150
+
151
+ <details><summary>Click to expand</summary>
152
+
153
+ </details>
154
+ -->
155
+
156
+ <!--
157
+ ### Out-of-Scope Use
158
+
159
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
160
+ -->
161
+
162
+ ## Evaluation
163
+
164
+ ### Metrics
165
+
166
+ #### Triplet
167
+
168
+ * Datasets: `all-nli-dev` and `all-nli-test`
169
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
170
+
171
+ | Metric | all-nli-dev | all-nli-test |
172
+ |:--------------------|:------------|:-------------|
173
+ | **cosine_accuracy** | **0.9039** | **0.9154** |
174
+
175
+ <!--
176
+ ## Bias, Risks and Limitations
177
+
178
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
179
+ -->
180
+
181
+ <!--
182
+ ### Recommendations
183
+
184
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
185
+ -->
186
+
187
+ ## Training Details
188
+
189
+ ### Training Dataset
190
+
191
+ #### all-nli
192
+
193
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
194
+ * Size: 557,850 training samples
195
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
196
+ * Approximate statistics based on the first 1000 samples:
197
+ | | anchor | positive | negative |
198
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
199
+ | type | string | string | string |
200
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.46 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.81 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
201
+ * Samples:
202
+ | anchor | positive | negative |
203
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
204
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
205
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
206
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
207
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
208
+ ```json
209
+ {
210
+ "scale": 20.0,
211
+ "similarity_fct": "cos_sim"
212
+ }
213
+ ```
214
+
215
+ ### Evaluation Dataset
216
+
217
+ #### all-nli
218
+
219
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
220
+ * Size: 6,584 evaluation samples
221
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
222
+ * Approximate statistics based on the first 1000 samples:
223
+ | | anchor | positive | negative |
224
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
225
+ | type | string | string | string |
226
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.95 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.78 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.35 tokens</li><li>max: 29 tokens</li></ul> |
227
+ * Samples:
228
+ | anchor | positive | negative |
229
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
230
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
231
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
232
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
233
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
234
+ ```json
235
+ {
236
+ "scale": 20.0,
237
+ "similarity_fct": "cos_sim"
238
+ }
239
+ ```
240
+
241
+ ### Training Hyperparameters
242
+ #### Non-Default Hyperparameters
243
+
244
+ - `eval_strategy`: steps
245
+ - `per_device_train_batch_size`: 16
246
+ - `per_device_eval_batch_size`: 16
247
+ - `num_train_epochs`: 1
248
+ - `warmup_ratio`: 0.1
249
+ - `fp16`: True
250
+ - `batch_sampler`: no_duplicates
251
+
252
+ #### All Hyperparameters
253
+ <details><summary>Click to expand</summary>
254
+
255
+ - `overwrite_output_dir`: False
256
+ - `do_predict`: False
257
+ - `eval_strategy`: steps
258
+ - `prediction_loss_only`: True
259
+ - `per_device_train_batch_size`: 16
260
+ - `per_device_eval_batch_size`: 16
261
+ - `per_gpu_train_batch_size`: None
262
+ - `per_gpu_eval_batch_size`: None
263
+ - `gradient_accumulation_steps`: 1
264
+ - `eval_accumulation_steps`: None
265
+ - `torch_empty_cache_steps`: None
266
+ - `learning_rate`: 5e-05
267
+ - `weight_decay`: 0.0
268
+ - `adam_beta1`: 0.9
269
+ - `adam_beta2`: 0.999
270
+ - `adam_epsilon`: 1e-08
271
+ - `max_grad_norm`: 1.0
272
+ - `num_train_epochs`: 1
273
+ - `max_steps`: -1
274
+ - `lr_scheduler_type`: linear
275
+ - `lr_scheduler_kwargs`: {}
276
+ - `warmup_ratio`: 0.1
277
+ - `warmup_steps`: 0
278
+ - `log_level`: passive
279
+ - `log_level_replica`: warning
280
+ - `log_on_each_node`: True
281
+ - `logging_nan_inf_filter`: True
282
+ - `save_safetensors`: True
283
+ - `save_on_each_node`: False
284
+ - `save_only_model`: False
285
+ - `restore_callback_states_from_checkpoint`: False
286
+ - `no_cuda`: False
287
+ - `use_cpu`: False
288
+ - `use_mps_device`: False
289
+ - `seed`: 42
290
+ - `data_seed`: None
291
+ - `jit_mode_eval`: False
292
+ - `use_ipex`: False
293
+ - `bf16`: False
294
+ - `fp16`: True
295
+ - `fp16_opt_level`: O1
296
+ - `half_precision_backend`: auto
297
+ - `bf16_full_eval`: False
298
+ - `fp16_full_eval`: False
299
+ - `tf32`: None
300
+ - `local_rank`: 0
301
+ - `ddp_backend`: None
302
+ - `tpu_num_cores`: None
303
+ - `tpu_metrics_debug`: False
304
+ - `debug`: []
305
+ - `dataloader_drop_last`: False
306
+ - `dataloader_num_workers`: 0
307
+ - `dataloader_prefetch_factor`: None
308
+ - `past_index`: -1
309
+ - `disable_tqdm`: False
310
+ - `remove_unused_columns`: True
311
+ - `label_names`: None
312
+ - `load_best_model_at_end`: False
313
+ - `ignore_data_skip`: False
314
+ - `fsdp`: []
315
+ - `fsdp_min_num_params`: 0
316
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
317
+ - `fsdp_transformer_layer_cls_to_wrap`: None
318
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
319
+ - `deepspeed`: None
320
+ - `label_smoothing_factor`: 0.0
321
+ - `optim`: adamw_torch
322
+ - `optim_args`: None
323
+ - `adafactor`: False
324
+ - `group_by_length`: False
325
+ - `length_column_name`: length
326
+ - `ddp_find_unused_parameters`: None
327
+ - `ddp_bucket_cap_mb`: None
328
+ - `ddp_broadcast_buffers`: False
329
+ - `dataloader_pin_memory`: True
330
+ - `dataloader_persistent_workers`: False
331
+ - `skip_memory_metrics`: True
332
+ - `use_legacy_prediction_loop`: False
333
+ - `push_to_hub`: False
334
+ - `resume_from_checkpoint`: None
335
+ - `hub_model_id`: None
336
+ - `hub_strategy`: every_save
337
+ - `hub_private_repo`: False
338
+ - `hub_always_push`: False
339
+ - `gradient_checkpointing`: False
340
+ - `gradient_checkpointing_kwargs`: None
341
+ - `include_inputs_for_metrics`: False
342
+ - `include_for_metrics`: []
343
+ - `eval_do_concat_batches`: True
344
+ - `fp16_backend`: auto
345
+ - `push_to_hub_model_id`: None
346
+ - `push_to_hub_organization`: None
347
+ - `mp_parameters`:
348
+ - `auto_find_batch_size`: False
349
+ - `full_determinism`: False
350
+ - `torchdynamo`: None
351
+ - `ray_scope`: last
352
+ - `ddp_timeout`: 1800
353
+ - `torch_compile`: False
354
+ - `torch_compile_backend`: None
355
+ - `torch_compile_mode`: None
356
+ - `dispatch_batches`: None
357
+ - `split_batches`: None
358
+ - `include_tokens_per_second`: False
359
+ - `include_num_input_tokens_seen`: False
360
+ - `neftune_noise_alpha`: None
361
+ - `optim_target_modules`: None
362
+ - `batch_eval_metrics`: False
363
+ - `eval_on_start`: False
364
+ - `use_liger_kernel`: False
365
+ - `eval_use_gather_object`: False
366
+ - `average_tokens_across_devices`: False
367
+ - `prompts`: None
368
+ - `batch_sampler`: no_duplicates
369
+ - `multi_dataset_batch_sampler`: proportional
370
+
371
+ </details>
372
+
373
+ ### Training Logs
374
+ | Epoch | Step | Training Loss | Validation Loss | all-nli-dev_cosine_accuracy | all-nli-test_cosine_accuracy |
375
+ |:-----:|:----:|:-------------:|:---------------:|:---------------------------:|:----------------------------:|
376
+ | 0 | 0 | - | - | 0.6211 | - |
377
+ | 0.016 | 100 | 2.5306 | 1.0656 | 0.7749 | - |
378
+ | 0.032 | 200 | 0.9109 | 0.8554 | 0.7936 | - |
379
+ | 0.048 | 300 | 1.2488 | 0.8116 | 0.8045 | - |
380
+ | 0.064 | 400 | 0.7921 | 0.8638 | 0.7980 | - |
381
+ | 0.08 | 500 | 0.7285 | 1.0676 | 0.7693 | - |
382
+ | 0.096 | 600 | 0.9519 | 1.2276 | 0.7673 | - |
383
+ | 0.112 | 700 | 0.8569 | 1.2144 | 0.7749 | - |
384
+ | 0.128 | 800 | 1.3088 | 1.3994 | 0.7555 | - |
385
+ | 0.144 | 900 | 1.2227 | 1.4842 | 0.7570 | - |
386
+ | 0.16 | 1000 | 1.104 | 1.1708 | 0.7629 | - |
387
+ | 0.176 | 1100 | 1.069 | 1.3670 | 0.7577 | - |
388
+ | 0.192 | 1200 | 0.9874 | 1.4517 | 0.7394 | - |
389
+ | 0.208 | 1300 | 0.7999 | 1.2141 | 0.7518 | - |
390
+ | 0.224 | 1400 | 0.776 | 1.2913 | 0.7605 | - |
391
+ | 0.24 | 1500 | 1.0367 | 1.0660 | 0.7743 | - |
392
+ | 0.256 | 1600 | 0.6614 | 1.1335 | 0.7631 | - |
393
+ | 0.272 | 1700 | 1.0519 | 1.9327 | 0.7022 | - |
394
+ | 0.288 | 1800 | 1.1647 | 1.2847 | 0.7503 | - |
395
+ | 0.304 | 1900 | 0.8315 | 1.1214 | 0.7547 | - |
396
+ | 0.32 | 2000 | 0.6953 | 1.0206 | 0.8094 | - |
397
+ | 0.336 | 2100 | 0.6189 | 1.0757 | 0.8176 | - |
398
+ | 0.352 | 2200 | 0.6519 | 1.0730 | 0.8202 | - |
399
+ | 0.368 | 2300 | 0.9357 | 1.5665 | 0.7749 | - |
400
+ | 0.384 | 2400 | 1.1421 | 1.1033 | 0.7948 | - |
401
+ | 0.4 | 2500 | 0.898 | 1.2376 | 0.7795 | - |
402
+ | 0.416 | 2600 | 0.6352 | 0.9549 | 0.8237 | - |
403
+ | 0.432 | 2700 | 0.8724 | 1.2148 | 0.8085 | - |
404
+ | 0.448 | 2800 | 1.5489 | 0.9826 | 0.8111 | - |
405
+ | 0.464 | 2900 | 0.8694 | 0.9075 | 0.8202 | - |
406
+ | 0.48 | 3000 | 0.7603 | 0.8855 | 0.8392 | - |
407
+ | 0.496 | 3100 | 0.832 | 0.8339 | 0.8389 | - |
408
+ | 0.512 | 3200 | 0.6681 | 0.8775 | 0.8474 | - |
409
+ | 0.528 | 3300 | 0.6928 | 0.7839 | 0.8666 | - |
410
+ | 0.544 | 3400 | 0.5855 | 0.8005 | 0.8540 | - |
411
+ | 0.56 | 3500 | 0.5602 | 0.8667 | 0.8530 | - |
412
+ | 0.576 | 3600 | 0.6113 | 0.7388 | 0.8490 | - |
413
+ | 0.592 | 3700 | 0.5827 | 0.7075 | 0.8609 | - |
414
+ | 0.608 | 3800 | 0.5542 | 0.6796 | 0.8738 | - |
415
+ | 0.624 | 3900 | 0.5551 | 0.7380 | 0.8659 | - |
416
+ | 0.64 | 4000 | 0.7671 | 0.7355 | 0.8680 | - |
417
+ | 0.656 | 4100 | 0.9996 | 0.7832 | 0.8791 | - |
418
+ | 0.672 | 4200 | 0.9447 | 0.6966 | 0.8835 | - |
419
+ | 0.688 | 4300 | 0.722 | 0.6668 | 0.8896 | - |
420
+ | 0.704 | 4400 | 0.6671 | 0.6204 | 0.8899 | - |
421
+ | 0.72 | 4500 | 0.5729 | 0.5900 | 0.8818 | - |
422
+ | 0.736 | 4600 | 0.6538 | 0.5833 | 0.8900 | - |
423
+ | 0.752 | 4700 | 0.6969 | 0.6433 | 0.8862 | - |
424
+ | 0.768 | 4800 | 0.6354 | 0.5750 | 0.8905 | - |
425
+ | 0.784 | 4900 | 0.5742 | 0.5635 | 0.8897 | - |
426
+ | 0.8 | 5000 | 0.6725 | 0.6278 | 0.8900 | - |
427
+ | 0.816 | 5100 | 0.5477 | 0.5660 | 0.8906 | - |
428
+ | 0.832 | 5200 | 0.5927 | 0.5440 | 0.8944 | - |
429
+ | 0.848 | 5300 | 0.5112 | 0.5509 | 0.8975 | - |
430
+ | 0.864 | 5400 | 0.6042 | 0.5706 | 0.8950 | - |
431
+ | 0.88 | 5500 | 0.5593 | 0.5485 | 0.8928 | - |
432
+ | 0.896 | 5600 | 0.5597 | 0.5399 | 0.9005 | - |
433
+ | 0.912 | 5700 | 0.628 | 0.5356 | 0.8996 | - |
434
+ | 0.928 | 5800 | 0.5313 | 0.5115 | 0.8981 | - |
435
+ | 0.944 | 5900 | 0.7392 | 0.5187 | 0.8985 | - |
436
+ | 0.96 | 6000 | 0.7582 | 0.5322 | 0.9031 | - |
437
+ | 0.976 | 6100 | 0.6313 | 0.5243 | 0.9033 | - |
438
+ | 0.992 | 6200 | 0.0004 | 0.5232 | 0.9039 | - |
439
+ | 1.0 | 6250 | - | - | - | 0.9154 |
440
+
441
+
442
+ ### Framework Versions
443
+ - Python: 3.10.15
444
+ - Sentence Transformers: 3.3.1
445
+ - Transformers: 4.46.3
446
+ - PyTorch: 2.5.1+cu124
447
+ - Accelerate: 1.1.1
448
+ - Datasets: 3.1.0
449
+ - Tokenizers: 0.20.3
450
+
451
+ ## Citation
452
+
453
+ ### BibTeX
454
+
455
+ #### Sentence Transformers
456
+ ```bibtex
457
+ @inproceedings{reimers-2019-sentence-bert,
458
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
459
+ author = "Reimers, Nils and Gurevych, Iryna",
460
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
461
+ month = "11",
462
+ year = "2019",
463
+ publisher = "Association for Computational Linguistics",
464
+ url = "https://arxiv.org/abs/1908.10084",
465
+ }
466
+ ```
467
+
468
+ #### MultipleNegativesRankingLoss
469
+ ```bibtex
470
+ @misc{henderson2017efficient,
471
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
472
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
473
+ year={2017},
474
+ eprint={1705.00652},
475
+ archivePrefix={arXiv},
476
+ primaryClass={cs.CL}
477
+ }
478
+ ```
479
+
480
+ <!--
481
+ ## Glossary
482
+
483
+ *Clearly define terms in order to be accessible across audiences.*
484
+ -->
485
+
486
+ <!--
487
+ ## Model Card Authors
488
+
489
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
490
+ -->
491
+
492
+ <!--
493
+ ## Model Card Contact
494
+
495
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
496
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/mpnet-base",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.46.3",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.46.3",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e69aff5fa3eae04797964b2c3fd01b1955a116e5ed9d6e0a8c85bd42d2efe24
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "model_max_length": 512,
59
+ "pad_token": "<pad>",
60
+ "sep_token": "</s>",
61
+ "strip_accents": null,
62
+ "tokenize_chinese_chars": true,
63
+ "tokenizer_class": "MPNetTokenizer",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff