--- license: apache-2.0 language: - es - en tags: - lora - openllama - agriculture - climate - potato - few-shot - classification - low-resource - causal-lm datasets: - custom base_model: openlm-research/open_llama_3b model-index: - name: lora-lateblight-v5 results: [] --- # lora-lateblight-v5 🌱 — OpenLLaMA-3B Fine-Tuned for Potato Late Blight Risk Prediction in Huancavelica, Peru **Author**: Jorge Luis Alonso ([@jalonso24](https://huggingface.co/jalonso24)) **Model Base**: [openlm-research/open_llama_3b](https://huggingface.co/openlm-research/open_llama_3b) **Adapter Format**: LoRA (PEFT) **Location**: Huancavelica, Andes, Peru **Languages**: Spanish, English **Task**: Multi-class classification (`Bajo`, `Moderado`, `Alto`) of late blight disease risk using natural language prompts --- ## 🔍 What is this? `lora-lateblight-v5` is a lightweight, prompt-based classifier that predicts potato **late blight risk** levels using natural language inputs. It was fine-tuned with **LoRA adapters** on a curated dataset of expert-labelled and synthetic examples from Huancavelica, Peru. It supports **bilingual prompts**, runs on **low-cost hardware**, and helps agronomists and rural farmers make better decisions using just weather and crop descriptions in plain language. --- ## 🧪 How was it trained? - **Fine-Tuning Method**: LoRA (Low-Rank Adaptation) - `r=32`, `alpha=16`, `dropout=0.1` - **Training Framework**: PEFT with `transformers`, Colab T4 GPU - **Epochs**: 5, using mixed precision with float32 stabilization - **Data Sources**: - Historical climate + crop risk data (SENAMHI, CIP) - Synthetic "Alto" risk cases for balancing - Distilled "Moderado" cases from GPT-4 + Gemini consensus - **Prompt Style**: - Few-shot (3 labeled examples: `Bajo`, `Moderado`, `Alto`) - Natural, bilingual inputs (e.g., Spanish + English) - Example format: ``` La variedad es INIA-302 Amarilis, sembrada en noviembre. La precipitación fue 18.4 mm, la temperatura máxima 17.2°C, la mínima 6.1°C y la humedad promedio 84.12%. ¿Cuál es el riesgo de tizón tardío? Riesgo: ``` --- ## 📊 Evaluation Summary | Metric | Score | |--------------------|-----------| | **Accuracy** | 73% | | **Recall (Alto)** | 100% | | **F1-score (Alto)** | 0.78 | | **F1-score (Mod.)** | 0.25 | - ✅ Model reliably detects all **high-risk (Alto)** cases - ⚠️ Struggles with **moderate-risk (Moderado)** due to timing subtleties - ⚖️ Prioritizes early warning over precision — suitable for advisory tools --- ## 📁 Files Included - `adapter_model.safetensors` — LoRA adapter weights - `tokenizer/` — Tokenizer from OpenLLaMA 3B - `README.md` — This model card --- ## 🧠 Intended Use - Forecast **potato late blight risk** in high-altitude Andean regions - Run lightweight inference on devices like Beelink Mini PCs - Support local extension workers, agronomists, or AI-powered alert tools - Educate farmers using mobile-friendly prompts in Spanish or English --- ## 🚧 Known Limitations - Overpredicts `Alto` in ambiguous cases — intended as a safety trade-off - Struggles with unclear or borderline `Moderado` cases - Not designed for **automated spraying systems** or **IoT-triggered actions** - Needs expert validation before field-level decisions --- ## 🫷 Try It (Coming Soon) We’re working on a [Gradio demo](https://huggingface.co/spaces) where you’ll be able to enter: - Crop variety - Planting month - Weekly humidity, temperature, and rainfall 👉 and receive a natural-language **Riesgo** prediction. --- ## 📚 Citation ``` @misc{alonso2025lateblight, author = {Jorge Luis Alonso}, title = {Predicting Potato Late Blight in Huancavelica, Peru, Using OpenLLaMA 3B + LoRA}, year = {2025}, {\url{https://www.linkedin.com/pulse/improving-potato-late-blight-forecasting-huancavelica-alonso-5h1af}} note = {Fine-tuning based on expert-labelled and synthetic data with few-shot prompt classification}, howpublished = {\url{https://huggingface.co/jalonso24/lora-lateblight-v5}} } ``` Based on foundational studies by Gastelo et al. (2025), Giraldo et al. (2010), and Saffer et al. (2024).