File size: 8,606 Bytes
63bd9c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"gpuType": "T4"
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "code",
"source": [
"!pip install -q gradio_client gradio torch torchaudio transformers"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "CA8lr7CjQnU5",
"outputId": "1a2dfb9c-8e3d-4177-cc19-e17ceb6da284"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m16.5/16.5 MB\u001b[0m \u001b[31m89.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m92.9/92.9 kB\u001b[0m \u001b[31m13.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m138.7/138.7 kB\u001b[0m \u001b[31m17.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m381.9/381.9 kB\u001b[0m \u001b[31m24.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m45.7/45.7 kB\u001b[0m \u001b[31m7.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m59.7/59.7 kB\u001b[0m \u001b[31m8.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m2.1/2.1 MB\u001b[0m \u001b[31m76.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m67.0/67.0 kB\u001b[0m \u001b[31m9.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Building wheel for ffmpy (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
"lida 0.0.10 requires kaleido, which is not installed.\n",
"llmx 0.0.15a0 requires cohere, which is not installed.\n",
"llmx 0.0.15a0 requires openai, which is not installed.\n",
"llmx 0.0.15a0 requires tiktoken, which is not installed.\n",
"tensorflow-probability 0.22.0 requires typing-extensions<4.6.0, but you have typing-extensions 4.8.0 which is incompatible.\u001b[0m\u001b[31m\n",
"\u001b[0m"
]
}
]
},
{
"cell_type": "code",
"source": [
"import gradio as gr\n",
"from transformers import pipeline\n",
"import numpy as np\n",
"import requests\n",
"from PIL import Image\n",
"from transformers import BlipProcessor, BlipForQuestionAnswering\n",
"\n",
"transcriber = pipeline(\"automatic-speech-recognition\", model=\"openai/whisper-base.en\")\n",
"\n",
"processor = BlipProcessor.from_pretrained(\"jaimik69/blip_finetuned\")\n",
"model = BlipForQuestionAnswering.from_pretrained(\"jaimik69/blip_finetuned\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ExsvuGVbQpHK",
"outputId": "98d83b01-4cd0-4507-bc93-942e998a6c85"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"import torch\n",
"\n",
"def transcribe(audio, img_url):\n",
" sr, y = audio\n",
" y = y.astype(np.float32)\n",
" y /= np.max(np.abs(y))\n",
" prompt = transcriber({\"sampling_rate\": sr, \"raw\": y})[\"text\"]\n",
" raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')\n",
" inputs = processor(raw_image, text=prompt, return_tensors=\"pt\")\n",
" generated_ids = model.generate(**inputs, max_new_tokens=10)\n",
" aqa_ans = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()\n",
"\n",
" return prompt, aqa_ans, gr.Image(img_url)\n",
"\n",
"demo = gr.Interface(\n",
" transcribe,\n",
" [gr.Audio(sources=[\"microphone\"], label = \"User Audio Input\"), gr.Textbox(label=\"User Image URL\")],\n",
" [gr.Textbox(label=\"Question\"), gr.Textbox(label=\"Answer\"), gr.Image(label = \"User Image\")],\n",
" title = 'Vox Helios', theme = 'dark-grass',\n",
" description = 'An Audio Question Answering Project'\n",
")\n",
"\n",
"if __name__ == \"__main__\":\n",
" demo.launch(debug=True,auth=(\"sai\", \"letmein\"))"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 719
},
"id": "V0vKhLvCQyUj",
"outputId": "9ce5a8c8-26aa-4dd7-caba-56583799f6a0"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"/usr/local/lib/python3.10/dist-packages/gradio/blocks.py:528: UserWarning: Cannot load dark-grass. Caught Exception: The space dark-grass does not exist\n",
" warnings.warn(f\"Cannot load {theme}. Caught Exception: {str(e)}\")\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
"\n",
"Colab notebook detected. This cell will run indefinitely so that you can see errors and logs. To turn off, set debug=False in launch().\n",
"Running on public URL: https://90c36f56b801550f7e.gradio.live\n",
"\n",
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"<div><iframe src=\"https://90c36f56b801550f7e.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
]
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Keyboard interruption in main thread... closing server.\n",
"Killing tunnel 127.0.0.1:7861 <> https://90c36f56b801550f7e.gradio.live\n"
]
}
]
},
{
"cell_type": "code",
"source": [],
"metadata": {
"id": "8nnM-fTOhVex"
},
"execution_count": null,
"outputs": []
}
]
} |