Upload folder using huggingface_hub
Browse files- config.json +106 -0
- configuration_llada.py +463 -0
- generation_config.json +6 -0
- latest +1 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +724 -0
- special_tokens_map.json +38 -0
- tokenizer.json +0 -0
- tokenizer_config.json +2184 -0
- zero_to_fp32.py +760 -0
config.json
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_type": "silu",
|
3 |
+
"add_faster_video": false,
|
4 |
+
"add_time_instruction": false,
|
5 |
+
"alibi": false,
|
6 |
+
"alibi_bias_max": 8.0,
|
7 |
+
"architectures": [
|
8 |
+
"LlavaLladaForMaskedDiffusion"
|
9 |
+
],
|
10 |
+
"attention_dropout": 0.0,
|
11 |
+
"attention_layer_norm": false,
|
12 |
+
"attention_layer_norm_with_affine": true,
|
13 |
+
"auto_map": {
|
14 |
+
"AutoConfig": "configuration_llada.LLaDAConfig",
|
15 |
+
"AutoModel": "modeling_llada.LLaDAModelLM",
|
16 |
+
"AutoModelForCausalLM": "modeling_llada.LLaDAModelLM"
|
17 |
+
},
|
18 |
+
"bias_for_layer_norm": false,
|
19 |
+
"block_group_size": 1,
|
20 |
+
"block_type": "llama",
|
21 |
+
"d_model": 4096,
|
22 |
+
"embedding_dropout": 0.0,
|
23 |
+
"embedding_size": 126464,
|
24 |
+
"eos_token_id": 126081,
|
25 |
+
"faster_token_stride": 10,
|
26 |
+
"flash_attention": false,
|
27 |
+
"force_sample": false,
|
28 |
+
"image_aspect_ratio": "anyres",
|
29 |
+
"image_crop_resolution": null,
|
30 |
+
"image_grid_pinpoints": [
|
31 |
+
[
|
32 |
+
384,
|
33 |
+
768
|
34 |
+
],
|
35 |
+
[
|
36 |
+
768,
|
37 |
+
384
|
38 |
+
],
|
39 |
+
[
|
40 |
+
768,
|
41 |
+
768
|
42 |
+
],
|
43 |
+
[
|
44 |
+
1152,
|
45 |
+
384
|
46 |
+
],
|
47 |
+
[
|
48 |
+
384,
|
49 |
+
1152
|
50 |
+
]
|
51 |
+
],
|
52 |
+
"image_split_resolution": null,
|
53 |
+
"include_bias": false,
|
54 |
+
"include_qkv_bias": false,
|
55 |
+
"init_cutoff_factor": null,
|
56 |
+
"init_device": "meta",
|
57 |
+
"init_fn": "mitchell",
|
58 |
+
"init_std": 0.02,
|
59 |
+
"input_emb_norm": false,
|
60 |
+
"layer_norm_type": "rms",
|
61 |
+
"layer_norm_with_affine": true,
|
62 |
+
"mask_token_id": 126336,
|
63 |
+
"max_sequence_length": 4096,
|
64 |
+
"mlp_hidden_size": 12288,
|
65 |
+
"mlp_ratio": 4,
|
66 |
+
"mm_hidden_size": 1152,
|
67 |
+
"mm_newline_position": "grid",
|
68 |
+
"mm_patch_merge_type": "spatial_unpad",
|
69 |
+
"mm_pooler_ratio": 2,
|
70 |
+
"mm_projector_lr": null,
|
71 |
+
"mm_projector_type": "mlp2x_gelu",
|
72 |
+
"mm_resampler_type": null,
|
73 |
+
"mm_spatial_pool_mode": "bilinear",
|
74 |
+
"mm_spatial_pool_stride": null,
|
75 |
+
"mm_tunable_parts": "mm_vision_tower,mm_mlp_adapter,mm_language_model",
|
76 |
+
"mm_use_im_patch_token": false,
|
77 |
+
"mm_use_im_start_end": false,
|
78 |
+
"mm_vision_select_feature": "patch",
|
79 |
+
"mm_vision_select_layer": -2,
|
80 |
+
"mm_vision_tower": "google/siglip-so400m-patch14-384",
|
81 |
+
"mm_vision_tower_lr": 2e-06,
|
82 |
+
"model_type": "llada",
|
83 |
+
"multi_query_attention": null,
|
84 |
+
"n_heads": 32,
|
85 |
+
"n_kv_heads": 32,
|
86 |
+
"n_layers": 32,
|
87 |
+
"pad_token_id": 126081,
|
88 |
+
"pos_skipping_range": 4096,
|
89 |
+
"precision": "amp_bf16",
|
90 |
+
"residual_dropout": 0.0,
|
91 |
+
"rms_norm_eps": 1e-05,
|
92 |
+
"rope": true,
|
93 |
+
"rope_full_precision": true,
|
94 |
+
"rope_theta": 500000.0,
|
95 |
+
"scale_logits": false,
|
96 |
+
"tokenizer_model_max_length": 4096,
|
97 |
+
"tokenizer_padding_side": "right",
|
98 |
+
"torch_dtype": "bfloat16",
|
99 |
+
"transformers_version": "4.50.3",
|
100 |
+
"use_cache": false,
|
101 |
+
"use_mm_proj": true,
|
102 |
+
"use_pos_skipping": false,
|
103 |
+
"vision_tower_pretrained": null,
|
104 |
+
"vocab_size": 126464,
|
105 |
+
"weight_tying": false
|
106 |
+
}
|
configuration_llada.py
ADDED
@@ -0,0 +1,463 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
LLaDA configuration
|
3 |
+
"""
|
4 |
+
from transformers import AutoConfig, PretrainedConfig
|
5 |
+
|
6 |
+
from enum import Enum
|
7 |
+
from os import PathLike
|
8 |
+
from typing import Union
|
9 |
+
from dataclasses import asdict, dataclass, field
|
10 |
+
from glob import glob
|
11 |
+
from pathlib import Path
|
12 |
+
from typing import (
|
13 |
+
Any,
|
14 |
+
Dict,
|
15 |
+
Iterable,
|
16 |
+
List,
|
17 |
+
Optional,
|
18 |
+
Tuple,
|
19 |
+
Type,
|
20 |
+
TypeVar,
|
21 |
+
Union,
|
22 |
+
cast,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
__all__ = [
|
27 |
+
"ActivationType",
|
28 |
+
"ActivationCheckpointingStrategy",
|
29 |
+
"BlockType",
|
30 |
+
"LayerNormType",
|
31 |
+
"InitFnType",
|
32 |
+
"ModelConfig",
|
33 |
+
]
|
34 |
+
|
35 |
+
PathOrStr = Union[str, PathLike]
|
36 |
+
|
37 |
+
|
38 |
+
class StrEnum(str, Enum):
|
39 |
+
"""
|
40 |
+
This is equivalent to Python's :class:`enum.StrEnum` since version 3.11.
|
41 |
+
We include this here for compatibility with older version of Python.
|
42 |
+
"""
|
43 |
+
|
44 |
+
def __str__(self) -> str:
|
45 |
+
return self.value
|
46 |
+
|
47 |
+
def __repr__(self) -> str:
|
48 |
+
return f"'{str(self)}'"
|
49 |
+
|
50 |
+
|
51 |
+
class LayerNormType(StrEnum):
|
52 |
+
default = "default"
|
53 |
+
"""
|
54 |
+
The default LayerNorm implementation, equivalent to PyTorch's built-in version.
|
55 |
+
"""
|
56 |
+
|
57 |
+
low_precision = "low_precision"
|
58 |
+
"""
|
59 |
+
A low-precision version of the default LayerNorm.
|
60 |
+
"""
|
61 |
+
|
62 |
+
rms = "rms"
|
63 |
+
"""
|
64 |
+
An RMSNorm implementation. When using ``torch.compile`` this is
|
65 |
+
probably the fastest implementation.
|
66 |
+
"""
|
67 |
+
|
68 |
+
gemma_rms = "gemma_rms"
|
69 |
+
"""
|
70 |
+
An RMSNorm implementation by gemmma. When using ``torch.compile`` this is
|
71 |
+
probably the fastest implementation.
|
72 |
+
"""
|
73 |
+
|
74 |
+
amd_compatible = "amd_compatible"
|
75 |
+
"""
|
76 |
+
LayerNorm implemented manually to work around an issue with ROCm.
|
77 |
+
"""
|
78 |
+
|
79 |
+
|
80 |
+
class ActivationType(StrEnum):
|
81 |
+
gelu = "gelu"
|
82 |
+
relu = "relu"
|
83 |
+
silu = "silu"
|
84 |
+
swiglu = "swiglu"
|
85 |
+
|
86 |
+
|
87 |
+
class BlockType(StrEnum):
|
88 |
+
sequential = "sequential"
|
89 |
+
parallel = "parallel"
|
90 |
+
|
91 |
+
llama = "llama"
|
92 |
+
"""
|
93 |
+
A block similar to the sequential block with slightly different
|
94 |
+
implementations of operations like attention to imitate the behavior of Llama.
|
95 |
+
"""
|
96 |
+
|
97 |
+
|
98 |
+
class InitFnType(StrEnum):
|
99 |
+
mitchell = "mitchell"
|
100 |
+
"""
|
101 |
+
The strategy suggested to us by Mitchell Wortsman from UW.
|
102 |
+
This uses a truncated normal distribution with an adaptive standard deviation that depends
|
103 |
+
on the size of the weights as well as the depth of the layer.
|
104 |
+
"""
|
105 |
+
|
106 |
+
normal = "normal"
|
107 |
+
"""
|
108 |
+
All weights are initialized from the same normal distribution.
|
109 |
+
"""
|
110 |
+
|
111 |
+
kaiming_normal = "kaiming_normal"
|
112 |
+
"""
|
113 |
+
All weights are initialized with the Kaiming method from a normal distribution.
|
114 |
+
Note this currently won't work with FSDP.
|
115 |
+
"""
|
116 |
+
|
117 |
+
fan_in = "fan_in"
|
118 |
+
"""
|
119 |
+
"Fan-in variance scaling", i.e. normal with a standard deviation of ``1/sqrt(d_in)`` where ``d_in``
|
120 |
+
is the input dimensionality of the kernel.
|
121 |
+
"""
|
122 |
+
|
123 |
+
full_megatron = "full_megatron"
|
124 |
+
"""
|
125 |
+
This is what metaseq calls "full megatron init". It is the init used for Llama 2.
|
126 |
+
"""
|
127 |
+
|
128 |
+
|
129 |
+
@dataclass
|
130 |
+
class ModelConfig():
|
131 |
+
"""
|
132 |
+
LLaDA (model) configuration.
|
133 |
+
"""
|
134 |
+
|
135 |
+
# Note that the defaults for these attributes are equivalent to the base GPT2 model.
|
136 |
+
|
137 |
+
d_model: int = 768
|
138 |
+
"""
|
139 |
+
The hidden size of the model.
|
140 |
+
"""
|
141 |
+
|
142 |
+
n_heads: int = 12
|
143 |
+
"""
|
144 |
+
The number of self-attention heads.
|
145 |
+
"""
|
146 |
+
|
147 |
+
n_kv_heads: Optional[int] = None
|
148 |
+
"""
|
149 |
+
The number of heads to use for keys and values. Defaults to `n_heads`.
|
150 |
+
Set this to ``None`` or ``n_heads`` for normal multi-head attention.
|
151 |
+
Set this to 1 for multi-query attention.
|
152 |
+
Set it to some in-between value for Llama2-style grouped query attention.
|
153 |
+
"""
|
154 |
+
|
155 |
+
n_layers: int = 12
|
156 |
+
"""
|
157 |
+
The number of layers/blocks.
|
158 |
+
"""
|
159 |
+
|
160 |
+
mlp_ratio: int = 4
|
161 |
+
"""
|
162 |
+
The ratio of the inner MLP dimensionality to ``d_model``.
|
163 |
+
This is only used when ``mlp_hidden_size`` is not set.
|
164 |
+
"""
|
165 |
+
|
166 |
+
mlp_hidden_size: Optional[int] = None
|
167 |
+
"""
|
168 |
+
Set the exact hidden size for the MLP. Otherwise the inner MLP hidden size will be set to `mlp_ratio * d_model`.
|
169 |
+
"""
|
170 |
+
|
171 |
+
activation_type: ActivationType = ActivationType.swiglu
|
172 |
+
"""
|
173 |
+
The activation function to use within the MLP layers.
|
174 |
+
"""
|
175 |
+
|
176 |
+
block_type: BlockType = BlockType.sequential
|
177 |
+
"""
|
178 |
+
The transformer block implementation.
|
179 |
+
"""
|
180 |
+
|
181 |
+
block_group_size: int = 1
|
182 |
+
"""
|
183 |
+
The number of blocks to group together into a single parent block.
|
184 |
+
This has no affect on the number of parameters in the model and is only used to wrap groups
|
185 |
+
of blocks together with a single FSDP wrapper during training.
|
186 |
+
"""
|
187 |
+
|
188 |
+
alibi: bool = False
|
189 |
+
"""
|
190 |
+
If ``True``, use ALiBi embeddings. Mutually exclusive with ``rope``.
|
191 |
+
"""
|
192 |
+
|
193 |
+
alibi_bias_max: float = 8.0
|
194 |
+
"""
|
195 |
+
Maximum absolute value of ALiBi bias.
|
196 |
+
"""
|
197 |
+
|
198 |
+
rope: bool = False
|
199 |
+
"""
|
200 |
+
Use rotary positional embeddings (RoPE). Mutually exclusive with ``alibi``.
|
201 |
+
"""
|
202 |
+
|
203 |
+
rope_full_precision: bool = True
|
204 |
+
"""
|
205 |
+
If ``True``, apply RoPE embeddings at full precision regardless of the input type. Otherwise,
|
206 |
+
apply RoPE at the precision of the input.
|
207 |
+
"""
|
208 |
+
|
209 |
+
flash_attention: bool = False
|
210 |
+
"""
|
211 |
+
If ``True``, use ``FlashAttention``.
|
212 |
+
"""
|
213 |
+
|
214 |
+
attention_dropout: float = 0.1
|
215 |
+
"""
|
216 |
+
The dropout probability within the attention modules.
|
217 |
+
"""
|
218 |
+
|
219 |
+
multi_query_attention: Optional[bool] = None
|
220 |
+
"""
|
221 |
+
Use the Multi-Query formulation of attention used in PaLM. This reduces the number of parameters
|
222 |
+
and is more efficient during inference.
|
223 |
+
"""
|
224 |
+
|
225 |
+
attention_layer_norm: bool = False
|
226 |
+
"""
|
227 |
+
Apply layer norm to the keys and queries within the attention mechanism.
|
228 |
+
This can help stabilize training.
|
229 |
+
"""
|
230 |
+
|
231 |
+
residual_dropout: float = 0.1
|
232 |
+
"""
|
233 |
+
The dropout probability for the MLP and attention output within each block.
|
234 |
+
"""
|
235 |
+
|
236 |
+
embedding_dropout: float = 0.1
|
237 |
+
"""
|
238 |
+
The dropout probability for embeddings.
|
239 |
+
"""
|
240 |
+
|
241 |
+
input_emb_norm: bool = False
|
242 |
+
"""
|
243 |
+
An input hidden_states norm implementation by gemmma.
|
244 |
+
"""
|
245 |
+
|
246 |
+
layer_norm_type: LayerNormType = LayerNormType.default
|
247 |
+
"""
|
248 |
+
The layernorm implementation to use.
|
249 |
+
"""
|
250 |
+
|
251 |
+
layer_norm_with_affine: bool = True
|
252 |
+
"""
|
253 |
+
Whether to include bias and weight parameters for the layer norms.
|
254 |
+
This only affects layer norms that are immediately followed by a linear layer in the forward pass,
|
255 |
+
so everything except QK-norms. To turn off affines for QK norms as well, set :attr:`attention_layer_norm_with_affine`
|
256 |
+
to ``False``.
|
257 |
+
"""
|
258 |
+
|
259 |
+
rms_norm_eps: float = 1e-05
|
260 |
+
"""
|
261 |
+
The rms layernorm eps param.
|
262 |
+
"""
|
263 |
+
|
264 |
+
attention_layer_norm_with_affine: bool = True
|
265 |
+
"""
|
266 |
+
Toggle affine transform for the QK norms.
|
267 |
+
"""
|
268 |
+
|
269 |
+
max_sequence_length: int = 1024
|
270 |
+
"""
|
271 |
+
The maximum input sequence length supported by the model.
|
272 |
+
"""
|
273 |
+
|
274 |
+
rope_theta: float = 10000.0
|
275 |
+
"""
|
276 |
+
The rope base param.
|
277 |
+
"""
|
278 |
+
|
279 |
+
include_qkv_bias: Optional[bool] = False
|
280 |
+
"""
|
281 |
+
Whether or not to include bias parameters in qkv linear layers.
|
282 |
+
"""
|
283 |
+
|
284 |
+
include_bias: bool = False
|
285 |
+
"""
|
286 |
+
Whether or not to include bias parameters in linear layers.
|
287 |
+
In PaLM, they got rid of all bias terms because they found that large
|
288 |
+
models tend to have near 0 bias terms anyway.
|
289 |
+
"""
|
290 |
+
|
291 |
+
bias_for_layer_norm: Optional[bool] = None
|
292 |
+
"""
|
293 |
+
Whether or not to include bias parameters in layer norm.
|
294 |
+
This is separate from the include_bias parameter, because of a ROCm crash when biases are disabled in
|
295 |
+
layer norm.
|
296 |
+
When this is None (the default), it inherits the setting from include_bias.
|
297 |
+
"""
|
298 |
+
|
299 |
+
scale_logits: bool = False
|
300 |
+
"""
|
301 |
+
If ``True``, scale the output logits by ``1 / sqrt(d_model)``.
|
302 |
+
"""
|
303 |
+
|
304 |
+
vocab_size: int = 50257
|
305 |
+
"""
|
306 |
+
Vocabulary size of the model.
|
307 |
+
"""
|
308 |
+
|
309 |
+
embedding_size: Optional[int] = 50304
|
310 |
+
"""
|
311 |
+
The number of embeddings, i.e. the number of tokens. If set to ``None`` it will default
|
312 |
+
to ``vocab_size``. If ``vocab_size`` is not a multiple of 128, setting this to the
|
313 |
+
next multiple of 128 that's greater than ``vocab_size`` can improve throughput
|
314 |
+
substantially.
|
315 |
+
"""
|
316 |
+
|
317 |
+
weight_tying: bool = True
|
318 |
+
"""
|
319 |
+
Whether to tie output linear weights to the input embedding.
|
320 |
+
"""
|
321 |
+
|
322 |
+
eos_token_id: int = 50256
|
323 |
+
"""
|
324 |
+
The ID of the end-of-sentence special token.
|
325 |
+
"""
|
326 |
+
|
327 |
+
pad_token_id: int = 50256
|
328 |
+
"""
|
329 |
+
The ID of the token to use for padding. Defaults to the ID of the EOS token.
|
330 |
+
"""
|
331 |
+
|
332 |
+
mask_token_id: Optional[int] = 50256
|
333 |
+
"""
|
334 |
+
The ID of the token to use for mask token. Defaults to the ID of the EOS token.
|
335 |
+
"""
|
336 |
+
|
337 |
+
init_device: Optional[str] = None
|
338 |
+
"""
|
339 |
+
The torch device to use when initializing the model parameters, e.g. "cpu", "cuda:0", "meta".
|
340 |
+
"""
|
341 |
+
|
342 |
+
init_fn: InitFnType = InitFnType.normal
|
343 |
+
"""
|
344 |
+
The weight initialization strategy.
|
345 |
+
"""
|
346 |
+
|
347 |
+
init_std: float = 0.02
|
348 |
+
"""
|
349 |
+
The standard deviation to use when initializing weights with a "fixed distribution" ``init_fn``, such
|
350 |
+
as "normal".
|
351 |
+
"""
|
352 |
+
|
353 |
+
init_cutoff_factor: Optional[float] = None
|
354 |
+
"""
|
355 |
+
A positive factor used to scale the cutoff values when initializing weights with a "fixed distribution" ``init_fn``, such
|
356 |
+
as "normal". Setting this to None means values are not cutoff.
|
357 |
+
"""
|
358 |
+
|
359 |
+
precision: Optional[str] = None
|
360 |
+
"""
|
361 |
+
Precision used to train/evaluate with. You shouldn't set this directly.
|
362 |
+
See :data:`TrainConfig.precision` instead.
|
363 |
+
"""
|
364 |
+
|
365 |
+
@property
|
366 |
+
def effective_n_kv_heads(self) -> int:
|
367 |
+
if self.n_kv_heads is None:
|
368 |
+
if self.multi_query_attention is True:
|
369 |
+
return 1
|
370 |
+
else:
|
371 |
+
return self.n_heads
|
372 |
+
else:
|
373 |
+
if self.multi_query_attention is None:
|
374 |
+
return self.n_kv_heads
|
375 |
+
if self.multi_query_attention:
|
376 |
+
n_kv_heads_should_be = 1
|
377 |
+
else:
|
378 |
+
n_kv_heads_should_be = self.n_heads
|
379 |
+
if self.n_kv_heads == n_kv_heads_should_be:
|
380 |
+
return n_kv_heads_should_be
|
381 |
+
else:
|
382 |
+
raise Exception(
|
383 |
+
"You can't set `multi_query_attention` and `n_kv_heads` at the same time."
|
384 |
+
)
|
385 |
+
|
386 |
+
class ActivationCheckpointingStrategy(StrEnum):
|
387 |
+
whole_layer = "whole_layer"
|
388 |
+
"""
|
389 |
+
Checkpoint every transformer layer.
|
390 |
+
"""
|
391 |
+
|
392 |
+
one_in_two = "one_in_two"
|
393 |
+
"""
|
394 |
+
Checkpoint one in two transformer layers.
|
395 |
+
"""
|
396 |
+
|
397 |
+
one_in_three = "one_in_three"
|
398 |
+
"""
|
399 |
+
Checkpoint one in three transformer layers.
|
400 |
+
"""
|
401 |
+
|
402 |
+
one_in_four = "one_in_four"
|
403 |
+
"""
|
404 |
+
Checkpoint one in four transformer layers.
|
405 |
+
"""
|
406 |
+
|
407 |
+
two_in_three = "two_in_three"
|
408 |
+
"""
|
409 |
+
Checkpoint two out of every three transformer layers.
|
410 |
+
"""
|
411 |
+
|
412 |
+
three_in_four = "three_in_four"
|
413 |
+
"""
|
414 |
+
Checkpoint three out of four of every transformer layers.
|
415 |
+
"""
|
416 |
+
|
417 |
+
four_in_five = "four_in_five"
|
418 |
+
"""
|
419 |
+
Checkpoint four out of five of every transformer layers.
|
420 |
+
"""
|
421 |
+
|
422 |
+
nine_in_ten = "nine_in_ten"
|
423 |
+
"""
|
424 |
+
Checkpoint nine out of ten of every transformer layers.
|
425 |
+
"""
|
426 |
+
|
427 |
+
fine_grained = "fine_grained"
|
428 |
+
"""
|
429 |
+
Focus checkpointing on where it is cheap to recompute and saves most memory.
|
430 |
+
"""
|
431 |
+
|
432 |
+
|
433 |
+
class LLaDAConfig(PretrainedConfig):
|
434 |
+
model_type = "llada"
|
435 |
+
keys_to_ignore_at_inference = ["past_key_values"] # TODO: confirm
|
436 |
+
|
437 |
+
def __init__(self, use_cache: bool = False, **kwargs):
|
438 |
+
model_config = ModelConfig()
|
439 |
+
all_kwargs = model_config.__dict__
|
440 |
+
all_kwargs.update(kwargs)
|
441 |
+
all_kwargs.update({"use_cache": use_cache})
|
442 |
+
all_kwargs.update(
|
443 |
+
{
|
444 |
+
"architectures": all_kwargs.get("architectures", ["LLaDAModelLM"])
|
445 |
+
}
|
446 |
+
)
|
447 |
+
super().__init__(**all_kwargs)
|
448 |
+
|
449 |
+
@property
|
450 |
+
def num_attention_heads(self):
|
451 |
+
return self.n_heads
|
452 |
+
|
453 |
+
@property
|
454 |
+
def num_hidden_layers(self):
|
455 |
+
return self.n_layers
|
456 |
+
|
457 |
+
@property
|
458 |
+
def hidden_size(self):
|
459 |
+
return self.d_model
|
460 |
+
|
461 |
+
|
462 |
+
# Register the config class so that it is available for transformer pipelines, auto-loading etc.
|
463 |
+
AutoConfig.register("llada", LLaDAConfig)
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 126080,
|
4 |
+
"eos_token_id": 126081,
|
5 |
+
"transformers_version": "4.50.3"
|
6 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step1560
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd0655d8236119113caab7c2de02c70e09115236b8c989777e3950e80bdc0253
|
3 |
+
size 4995589944
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c1e10724de4dcd777f4db8af1b5f2f310c0a55706c3c8e24afebe351b6a41ce
|
3 |
+
size 4999819552
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac537d5078cb48f66509bdadb69a86cab267ce32e90abd43225f7fac67c529b2
|
3 |
+
size 4999802728
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2fafe09aaf09161b89f18b2730cf29be019d68ce405fed3530ab5159e34a773e
|
3 |
+
size 1874563264
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,724 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 16869674048
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"model.image_newline": "model-00001-of-00004.safetensors",
|
7 |
+
"model.mm_projector.0.bias": "model-00004-of-00004.safetensors",
|
8 |
+
"model.mm_projector.0.weight": "model-00004-of-00004.safetensors",
|
9 |
+
"model.mm_projector.2.bias": "model-00004-of-00004.safetensors",
|
10 |
+
"model.mm_projector.2.weight": "model-00004-of-00004.safetensors",
|
11 |
+
"model.transformer.blocks.0.attn_norm.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.transformer.blocks.0.attn_out.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.transformer.blocks.0.ff_norm.weight": "model-00001-of-00004.safetensors",
|
14 |
+
"model.transformer.blocks.0.ff_out.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.transformer.blocks.0.ff_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.transformer.blocks.0.k_proj.weight": "model-00001-of-00004.safetensors",
|
17 |
+
"model.transformer.blocks.0.q_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.transformer.blocks.0.up_proj.weight": "model-00001-of-00004.safetensors",
|
19 |
+
"model.transformer.blocks.0.v_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.transformer.blocks.1.attn_norm.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.transformer.blocks.1.attn_out.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.transformer.blocks.1.ff_norm.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.transformer.blocks.1.ff_out.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.transformer.blocks.1.ff_proj.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.transformer.blocks.1.k_proj.weight": "model-00001-of-00004.safetensors",
|
26 |
+
"model.transformer.blocks.1.q_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.transformer.blocks.1.up_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.transformer.blocks.1.v_proj.weight": "model-00001-of-00004.safetensors",
|
29 |
+
"model.transformer.blocks.10.attn_norm.weight": "model-00002-of-00004.safetensors",
|
30 |
+
"model.transformer.blocks.10.attn_out.weight": "model-00002-of-00004.safetensors",
|
31 |
+
"model.transformer.blocks.10.ff_norm.weight": "model-00002-of-00004.safetensors",
|
32 |
+
"model.transformer.blocks.10.ff_out.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"model.transformer.blocks.10.ff_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.transformer.blocks.10.k_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.transformer.blocks.10.q_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.transformer.blocks.10.up_proj.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.transformer.blocks.10.v_proj.weight": "model-00002-of-00004.safetensors",
|
38 |
+
"model.transformer.blocks.11.attn_norm.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.transformer.blocks.11.attn_out.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.transformer.blocks.11.ff_norm.weight": "model-00002-of-00004.safetensors",
|
41 |
+
"model.transformer.blocks.11.ff_out.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.transformer.blocks.11.ff_proj.weight": "model-00002-of-00004.safetensors",
|
43 |
+
"model.transformer.blocks.11.k_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.transformer.blocks.11.q_proj.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.transformer.blocks.11.up_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.transformer.blocks.11.v_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.transformer.blocks.12.attn_norm.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.transformer.blocks.12.attn_out.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.transformer.blocks.12.ff_norm.weight": "model-00002-of-00004.safetensors",
|
50 |
+
"model.transformer.blocks.12.ff_out.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.transformer.blocks.12.ff_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.transformer.blocks.12.k_proj.weight": "model-00002-of-00004.safetensors",
|
53 |
+
"model.transformer.blocks.12.q_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.transformer.blocks.12.up_proj.weight": "model-00002-of-00004.safetensors",
|
55 |
+
"model.transformer.blocks.12.v_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.transformer.blocks.13.attn_norm.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.transformer.blocks.13.attn_out.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.transformer.blocks.13.ff_norm.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.transformer.blocks.13.ff_out.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.transformer.blocks.13.ff_proj.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.transformer.blocks.13.k_proj.weight": "model-00002-of-00004.safetensors",
|
62 |
+
"model.transformer.blocks.13.q_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.transformer.blocks.13.up_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.transformer.blocks.13.v_proj.weight": "model-00002-of-00004.safetensors",
|
65 |
+
"model.transformer.blocks.14.attn_norm.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.transformer.blocks.14.attn_out.weight": "model-00002-of-00004.safetensors",
|
67 |
+
"model.transformer.blocks.14.ff_norm.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.transformer.blocks.14.ff_out.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.transformer.blocks.14.ff_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.transformer.blocks.14.k_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.transformer.blocks.14.q_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.transformer.blocks.14.up_proj.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.transformer.blocks.14.v_proj.weight": "model-00002-of-00004.safetensors",
|
74 |
+
"model.transformer.blocks.15.attn_norm.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.transformer.blocks.15.attn_out.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.transformer.blocks.15.ff_norm.weight": "model-00002-of-00004.safetensors",
|
77 |
+
"model.transformer.blocks.15.ff_out.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.transformer.blocks.15.ff_proj.weight": "model-00002-of-00004.safetensors",
|
79 |
+
"model.transformer.blocks.15.k_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.transformer.blocks.15.q_proj.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.transformer.blocks.15.up_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.transformer.blocks.15.v_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.transformer.blocks.16.attn_norm.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.transformer.blocks.16.attn_out.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.transformer.blocks.16.ff_norm.weight": "model-00002-of-00004.safetensors",
|
86 |
+
"model.transformer.blocks.16.ff_out.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.transformer.blocks.16.ff_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.transformer.blocks.16.k_proj.weight": "model-00002-of-00004.safetensors",
|
89 |
+
"model.transformer.blocks.16.q_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.transformer.blocks.16.up_proj.weight": "model-00002-of-00004.safetensors",
|
91 |
+
"model.transformer.blocks.16.v_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.transformer.blocks.17.attn_norm.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.transformer.blocks.17.attn_out.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.transformer.blocks.17.ff_norm.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.transformer.blocks.17.ff_out.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.transformer.blocks.17.ff_proj.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.transformer.blocks.17.k_proj.weight": "model-00002-of-00004.safetensors",
|
98 |
+
"model.transformer.blocks.17.q_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.transformer.blocks.17.up_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.transformer.blocks.17.v_proj.weight": "model-00002-of-00004.safetensors",
|
101 |
+
"model.transformer.blocks.18.attn_norm.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.transformer.blocks.18.attn_out.weight": "model-00002-of-00004.safetensors",
|
103 |
+
"model.transformer.blocks.18.ff_norm.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.transformer.blocks.18.ff_out.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.transformer.blocks.18.ff_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.transformer.blocks.18.k_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.transformer.blocks.18.q_proj.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.transformer.blocks.18.up_proj.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.transformer.blocks.18.v_proj.weight": "model-00002-of-00004.safetensors",
|
110 |
+
"model.transformer.blocks.19.attn_norm.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.transformer.blocks.19.attn_out.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.transformer.blocks.19.ff_norm.weight": "model-00002-of-00004.safetensors",
|
113 |
+
"model.transformer.blocks.19.ff_out.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.transformer.blocks.19.ff_proj.weight": "model-00002-of-00004.safetensors",
|
115 |
+
"model.transformer.blocks.19.k_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.transformer.blocks.19.q_proj.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.transformer.blocks.19.up_proj.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.transformer.blocks.19.v_proj.weight": "model-00002-of-00004.safetensors",
|
119 |
+
"model.transformer.blocks.2.attn_norm.weight": "model-00001-of-00004.safetensors",
|
120 |
+
"model.transformer.blocks.2.attn_out.weight": "model-00001-of-00004.safetensors",
|
121 |
+
"model.transformer.blocks.2.ff_norm.weight": "model-00001-of-00004.safetensors",
|
122 |
+
"model.transformer.blocks.2.ff_out.weight": "model-00001-of-00004.safetensors",
|
123 |
+
"model.transformer.blocks.2.ff_proj.weight": "model-00001-of-00004.safetensors",
|
124 |
+
"model.transformer.blocks.2.k_proj.weight": "model-00001-of-00004.safetensors",
|
125 |
+
"model.transformer.blocks.2.q_proj.weight": "model-00001-of-00004.safetensors",
|
126 |
+
"model.transformer.blocks.2.up_proj.weight": "model-00001-of-00004.safetensors",
|
127 |
+
"model.transformer.blocks.2.v_proj.weight": "model-00001-of-00004.safetensors",
|
128 |
+
"model.transformer.blocks.20.attn_norm.weight": "model-00002-of-00004.safetensors",
|
129 |
+
"model.transformer.blocks.20.attn_out.weight": "model-00002-of-00004.safetensors",
|
130 |
+
"model.transformer.blocks.20.ff_norm.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.transformer.blocks.20.ff_out.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"model.transformer.blocks.20.ff_proj.weight": "model-00003-of-00004.safetensors",
|
133 |
+
"model.transformer.blocks.20.k_proj.weight": "model-00002-of-00004.safetensors",
|
134 |
+
"model.transformer.blocks.20.q_proj.weight": "model-00002-of-00004.safetensors",
|
135 |
+
"model.transformer.blocks.20.up_proj.weight": "model-00003-of-00004.safetensors",
|
136 |
+
"model.transformer.blocks.20.v_proj.weight": "model-00002-of-00004.safetensors",
|
137 |
+
"model.transformer.blocks.21.attn_norm.weight": "model-00003-of-00004.safetensors",
|
138 |
+
"model.transformer.blocks.21.attn_out.weight": "model-00003-of-00004.safetensors",
|
139 |
+
"model.transformer.blocks.21.ff_norm.weight": "model-00003-of-00004.safetensors",
|
140 |
+
"model.transformer.blocks.21.ff_out.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"model.transformer.blocks.21.ff_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.transformer.blocks.21.k_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.transformer.blocks.21.q_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.transformer.blocks.21.up_proj.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"model.transformer.blocks.21.v_proj.weight": "model-00003-of-00004.safetensors",
|
146 |
+
"model.transformer.blocks.22.attn_norm.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"model.transformer.blocks.22.attn_out.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.transformer.blocks.22.ff_norm.weight": "model-00003-of-00004.safetensors",
|
149 |
+
"model.transformer.blocks.22.ff_out.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"model.transformer.blocks.22.ff_proj.weight": "model-00003-of-00004.safetensors",
|
151 |
+
"model.transformer.blocks.22.k_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"model.transformer.blocks.22.q_proj.weight": "model-00003-of-00004.safetensors",
|
153 |
+
"model.transformer.blocks.22.up_proj.weight": "model-00003-of-00004.safetensors",
|
154 |
+
"model.transformer.blocks.22.v_proj.weight": "model-00003-of-00004.safetensors",
|
155 |
+
"model.transformer.blocks.23.attn_norm.weight": "model-00003-of-00004.safetensors",
|
156 |
+
"model.transformer.blocks.23.attn_out.weight": "model-00003-of-00004.safetensors",
|
157 |
+
"model.transformer.blocks.23.ff_norm.weight": "model-00003-of-00004.safetensors",
|
158 |
+
"model.transformer.blocks.23.ff_out.weight": "model-00003-of-00004.safetensors",
|
159 |
+
"model.transformer.blocks.23.ff_proj.weight": "model-00003-of-00004.safetensors",
|
160 |
+
"model.transformer.blocks.23.k_proj.weight": "model-00003-of-00004.safetensors",
|
161 |
+
"model.transformer.blocks.23.q_proj.weight": "model-00003-of-00004.safetensors",
|
162 |
+
"model.transformer.blocks.23.up_proj.weight": "model-00003-of-00004.safetensors",
|
163 |
+
"model.transformer.blocks.23.v_proj.weight": "model-00003-of-00004.safetensors",
|
164 |
+
"model.transformer.blocks.24.attn_norm.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.transformer.blocks.24.attn_out.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.transformer.blocks.24.ff_norm.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.transformer.blocks.24.ff_out.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.transformer.blocks.24.ff_proj.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.transformer.blocks.24.k_proj.weight": "model-00003-of-00004.safetensors",
|
170 |
+
"model.transformer.blocks.24.q_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.transformer.blocks.24.up_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.transformer.blocks.24.v_proj.weight": "model-00003-of-00004.safetensors",
|
173 |
+
"model.transformer.blocks.25.attn_norm.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.transformer.blocks.25.attn_out.weight": "model-00003-of-00004.safetensors",
|
175 |
+
"model.transformer.blocks.25.ff_norm.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.transformer.blocks.25.ff_out.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.transformer.blocks.25.ff_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.transformer.blocks.25.k_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.transformer.blocks.25.q_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.transformer.blocks.25.up_proj.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.transformer.blocks.25.v_proj.weight": "model-00003-of-00004.safetensors",
|
182 |
+
"model.transformer.blocks.26.attn_norm.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.transformer.blocks.26.attn_out.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.transformer.blocks.26.ff_norm.weight": "model-00003-of-00004.safetensors",
|
185 |
+
"model.transformer.blocks.26.ff_out.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.transformer.blocks.26.ff_proj.weight": "model-00003-of-00004.safetensors",
|
187 |
+
"model.transformer.blocks.26.k_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.transformer.blocks.26.q_proj.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.transformer.blocks.26.up_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.transformer.blocks.26.v_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.transformer.blocks.27.attn_norm.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.transformer.blocks.27.attn_out.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.transformer.blocks.27.ff_norm.weight": "model-00003-of-00004.safetensors",
|
194 |
+
"model.transformer.blocks.27.ff_out.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.transformer.blocks.27.ff_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.transformer.blocks.27.k_proj.weight": "model-00003-of-00004.safetensors",
|
197 |
+
"model.transformer.blocks.27.q_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.transformer.blocks.27.up_proj.weight": "model-00003-of-00004.safetensors",
|
199 |
+
"model.transformer.blocks.27.v_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.transformer.blocks.28.attn_norm.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.transformer.blocks.28.attn_out.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.transformer.blocks.28.ff_norm.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.transformer.blocks.28.ff_out.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.transformer.blocks.28.ff_proj.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.transformer.blocks.28.k_proj.weight": "model-00003-of-00004.safetensors",
|
206 |
+
"model.transformer.blocks.28.q_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.transformer.blocks.28.up_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.transformer.blocks.28.v_proj.weight": "model-00003-of-00004.safetensors",
|
209 |
+
"model.transformer.blocks.29.attn_norm.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.transformer.blocks.29.attn_out.weight": "model-00003-of-00004.safetensors",
|
211 |
+
"model.transformer.blocks.29.ff_norm.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.transformer.blocks.29.ff_out.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.transformer.blocks.29.ff_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.transformer.blocks.29.k_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.transformer.blocks.29.q_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.transformer.blocks.29.up_proj.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.transformer.blocks.29.v_proj.weight": "model-00003-of-00004.safetensors",
|
218 |
+
"model.transformer.blocks.3.attn_norm.weight": "model-00001-of-00004.safetensors",
|
219 |
+
"model.transformer.blocks.3.attn_out.weight": "model-00001-of-00004.safetensors",
|
220 |
+
"model.transformer.blocks.3.ff_norm.weight": "model-00001-of-00004.safetensors",
|
221 |
+
"model.transformer.blocks.3.ff_out.weight": "model-00001-of-00004.safetensors",
|
222 |
+
"model.transformer.blocks.3.ff_proj.weight": "model-00001-of-00004.safetensors",
|
223 |
+
"model.transformer.blocks.3.k_proj.weight": "model-00001-of-00004.safetensors",
|
224 |
+
"model.transformer.blocks.3.q_proj.weight": "model-00001-of-00004.safetensors",
|
225 |
+
"model.transformer.blocks.3.up_proj.weight": "model-00001-of-00004.safetensors",
|
226 |
+
"model.transformer.blocks.3.v_proj.weight": "model-00001-of-00004.safetensors",
|
227 |
+
"model.transformer.blocks.30.attn_norm.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.transformer.blocks.30.attn_out.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.transformer.blocks.30.ff_norm.weight": "model-00003-of-00004.safetensors",
|
230 |
+
"model.transformer.blocks.30.ff_out.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.transformer.blocks.30.ff_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.transformer.blocks.30.k_proj.weight": "model-00003-of-00004.safetensors",
|
233 |
+
"model.transformer.blocks.30.q_proj.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.transformer.blocks.30.up_proj.weight": "model-00003-of-00004.safetensors",
|
235 |
+
"model.transformer.blocks.30.v_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.transformer.blocks.31.attn_norm.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.transformer.blocks.31.attn_out.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.transformer.blocks.31.ff_norm.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.transformer.blocks.31.ff_out.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.transformer.blocks.31.ff_proj.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"model.transformer.blocks.31.k_proj.weight": "model-00003-of-00004.safetensors",
|
242 |
+
"model.transformer.blocks.31.q_proj.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"model.transformer.blocks.31.up_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.transformer.blocks.31.v_proj.weight": "model-00003-of-00004.safetensors",
|
245 |
+
"model.transformer.blocks.4.attn_norm.weight": "model-00001-of-00004.safetensors",
|
246 |
+
"model.transformer.blocks.4.attn_out.weight": "model-00001-of-00004.safetensors",
|
247 |
+
"model.transformer.blocks.4.ff_norm.weight": "model-00001-of-00004.safetensors",
|
248 |
+
"model.transformer.blocks.4.ff_out.weight": "model-00001-of-00004.safetensors",
|
249 |
+
"model.transformer.blocks.4.ff_proj.weight": "model-00001-of-00004.safetensors",
|
250 |
+
"model.transformer.blocks.4.k_proj.weight": "model-00001-of-00004.safetensors",
|
251 |
+
"model.transformer.blocks.4.q_proj.weight": "model-00001-of-00004.safetensors",
|
252 |
+
"model.transformer.blocks.4.up_proj.weight": "model-00001-of-00004.safetensors",
|
253 |
+
"model.transformer.blocks.4.v_proj.weight": "model-00001-of-00004.safetensors",
|
254 |
+
"model.transformer.blocks.5.attn_norm.weight": "model-00001-of-00004.safetensors",
|
255 |
+
"model.transformer.blocks.5.attn_out.weight": "model-00001-of-00004.safetensors",
|
256 |
+
"model.transformer.blocks.5.ff_norm.weight": "model-00001-of-00004.safetensors",
|
257 |
+
"model.transformer.blocks.5.ff_out.weight": "model-00001-of-00004.safetensors",
|
258 |
+
"model.transformer.blocks.5.ff_proj.weight": "model-00001-of-00004.safetensors",
|
259 |
+
"model.transformer.blocks.5.k_proj.weight": "model-00001-of-00004.safetensors",
|
260 |
+
"model.transformer.blocks.5.q_proj.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"model.transformer.blocks.5.up_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"model.transformer.blocks.5.v_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"model.transformer.blocks.6.attn_norm.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"model.transformer.blocks.6.attn_out.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"model.transformer.blocks.6.ff_norm.weight": "model-00001-of-00004.safetensors",
|
266 |
+
"model.transformer.blocks.6.ff_out.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"model.transformer.blocks.6.ff_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"model.transformer.blocks.6.k_proj.weight": "model-00001-of-00004.safetensors",
|
269 |
+
"model.transformer.blocks.6.q_proj.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"model.transformer.blocks.6.up_proj.weight": "model-00001-of-00004.safetensors",
|
271 |
+
"model.transformer.blocks.6.v_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"model.transformer.blocks.7.attn_norm.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"model.transformer.blocks.7.attn_out.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"model.transformer.blocks.7.ff_norm.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"model.transformer.blocks.7.ff_out.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"model.transformer.blocks.7.ff_proj.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"model.transformer.blocks.7.k_proj.weight": "model-00001-of-00004.safetensors",
|
278 |
+
"model.transformer.blocks.7.q_proj.weight": "model-00001-of-00004.safetensors",
|
279 |
+
"model.transformer.blocks.7.up_proj.weight": "model-00001-of-00004.safetensors",
|
280 |
+
"model.transformer.blocks.7.v_proj.weight": "model-00001-of-00004.safetensors",
|
281 |
+
"model.transformer.blocks.8.attn_norm.weight": "model-00001-of-00004.safetensors",
|
282 |
+
"model.transformer.blocks.8.attn_out.weight": "model-00001-of-00004.safetensors",
|
283 |
+
"model.transformer.blocks.8.ff_norm.weight": "model-00001-of-00004.safetensors",
|
284 |
+
"model.transformer.blocks.8.ff_out.weight": "model-00001-of-00004.safetensors",
|
285 |
+
"model.transformer.blocks.8.ff_proj.weight": "model-00001-of-00004.safetensors",
|
286 |
+
"model.transformer.blocks.8.k_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"model.transformer.blocks.8.q_proj.weight": "model-00001-of-00004.safetensors",
|
288 |
+
"model.transformer.blocks.8.up_proj.weight": "model-00001-of-00004.safetensors",
|
289 |
+
"model.transformer.blocks.8.v_proj.weight": "model-00001-of-00004.safetensors",
|
290 |
+
"model.transformer.blocks.9.attn_norm.weight": "model-00002-of-00004.safetensors",
|
291 |
+
"model.transformer.blocks.9.attn_out.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"model.transformer.blocks.9.ff_norm.weight": "model-00002-of-00004.safetensors",
|
293 |
+
"model.transformer.blocks.9.ff_out.weight": "model-00002-of-00004.safetensors",
|
294 |
+
"model.transformer.blocks.9.ff_proj.weight": "model-00002-of-00004.safetensors",
|
295 |
+
"model.transformer.blocks.9.k_proj.weight": "model-00002-of-00004.safetensors",
|
296 |
+
"model.transformer.blocks.9.q_proj.weight": "model-00002-of-00004.safetensors",
|
297 |
+
"model.transformer.blocks.9.up_proj.weight": "model-00002-of-00004.safetensors",
|
298 |
+
"model.transformer.blocks.9.v_proj.weight": "model-00002-of-00004.safetensors",
|
299 |
+
"model.transformer.ff_out.weight": "model-00004-of-00004.safetensors",
|
300 |
+
"model.transformer.ln_f.weight": "model-00001-of-00004.safetensors",
|
301 |
+
"model.transformer.wte.weight": "model-00001-of-00004.safetensors",
|
302 |
+
"model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.bias": "model-00004-of-00004.safetensors",
|
303 |
+
"model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00004-of-00004.safetensors",
|
304 |
+
"model.vision_tower.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00004-of-00004.safetensors",
|
305 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
306 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
307 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
308 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
309 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
310 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
311 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
312 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
313 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
314 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
315 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
316 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
317 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
318 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
319 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
320 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
321 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
322 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
323 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
324 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
325 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
326 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
327 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
328 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
329 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
330 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
331 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
332 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
333 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
334 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
335 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
336 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
337 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
338 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
339 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
340 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
341 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
342 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
343 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
344 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
345 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
346 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
347 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
348 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
349 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
350 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
351 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
352 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
353 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
354 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
355 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
356 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
357 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
358 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
359 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
360 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
361 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
362 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
363 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
364 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
365 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
366 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
367 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
368 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
369 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
370 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
371 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
372 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
373 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
374 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
375 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
376 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
377 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
378 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
379 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
380 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
381 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
382 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
383 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
384 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
385 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
386 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
387 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
388 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
389 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
390 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
391 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
392 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
393 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
394 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
395 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
396 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
397 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
398 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
399 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
400 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
401 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
402 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
403 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
404 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
405 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
406 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
407 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
408 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
409 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
410 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
411 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
412 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
413 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
414 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
415 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
416 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
417 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
418 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
419 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
420 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
421 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
422 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
423 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
424 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
425 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
426 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
427 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
428 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
429 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
430 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
431 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
432 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
433 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
434 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
435 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
436 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
437 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
438 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
439 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
440 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
441 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
442 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
443 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
444 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
445 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
446 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
447 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
448 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
449 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
450 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
451 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
452 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
453 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
454 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
455 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
456 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
457 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
458 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
459 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
460 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
461 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
462 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
463 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
464 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
465 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
466 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
467 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
468 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
469 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
470 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
471 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
472 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
473 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
474 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
475 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
476 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
477 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
478 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
479 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
480 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
481 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
482 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
483 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
484 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
485 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
486 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
487 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
488 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
489 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
490 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
491 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
492 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
493 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
494 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
495 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
496 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
497 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
498 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
499 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
500 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
501 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
502 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
503 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
504 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
505 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
506 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
507 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
508 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
509 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
510 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
511 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
512 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
513 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
514 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
515 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
516 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
517 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
518 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
519 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
520 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
521 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
522 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
523 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
524 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
525 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
526 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
527 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
528 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
529 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
530 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
531 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
532 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
533 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
534 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
535 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
536 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
537 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
538 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
539 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
540 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
541 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
542 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
543 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
544 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
545 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
546 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
547 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
548 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
549 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
550 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
551 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
552 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
553 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
554 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
555 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
556 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
557 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
558 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
559 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
560 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
561 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
562 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
563 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
564 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
565 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
566 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
567 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
568 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
569 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
570 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
571 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
572 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
573 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
574 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
575 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
576 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
577 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
578 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
579 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
580 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
581 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
582 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
583 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
584 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
585 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
586 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
587 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
588 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
589 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
590 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
591 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
592 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
593 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
594 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
595 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
596 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
597 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
598 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
599 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
600 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
601 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
602 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
603 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
604 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
605 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
606 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
607 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
608 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
609 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
610 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
611 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
612 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
613 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
614 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
615 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
616 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
617 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
618 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
619 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
620 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
621 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
622 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
623 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
624 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
625 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
626 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
627 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
628 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
629 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
630 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
631 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
632 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
633 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
634 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
635 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
636 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
637 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
638 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
639 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
640 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
641 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
642 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
643 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
644 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
645 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
646 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
647 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
648 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
649 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
650 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
651 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
652 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
653 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
654 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
655 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
656 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
657 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
658 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
659 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
660 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
661 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
662 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
663 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
664 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
665 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
666 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
667 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
668 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
669 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
670 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
671 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
672 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
673 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
674 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
675 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
676 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
677 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
678 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
679 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
680 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
681 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
682 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
683 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
684 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
685 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
686 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
687 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
688 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
689 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
690 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
691 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
692 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
693 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
694 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
695 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
696 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
697 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
698 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
699 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
700 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
701 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
702 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
703 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
704 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
705 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
706 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
707 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
708 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
709 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
710 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
711 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
712 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
713 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
714 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
715 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
716 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
717 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
718 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
719 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
720 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
721 |
+
"model.vision_tower.vision_tower.vision_model.post_layernorm.bias": "model-00004-of-00004.safetensors",
|
722 |
+
"model.vision_tower.vision_tower.vision_model.post_layernorm.weight": "model-00004-of-00004.safetensors"
|
723 |
+
}
|
724 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<role>",
|
4 |
+
"</role>",
|
5 |
+
"<|arithmetic_start|>",
|
6 |
+
"<|arithmetic_end|>",
|
7 |
+
"<|number_start|>",
|
8 |
+
"<|number_end|>"
|
9 |
+
],
|
10 |
+
"bos_token": {
|
11 |
+
"content": "<|startoftext|>",
|
12 |
+
"lstrip": false,
|
13 |
+
"normalized": false,
|
14 |
+
"rstrip": false,
|
15 |
+
"single_word": false
|
16 |
+
},
|
17 |
+
"cls_token": {
|
18 |
+
"content": "[CLS]",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"eos_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
},
|
31 |
+
"pad_token": {
|
32 |
+
"content": "<|endoftext|>",
|
33 |
+
"lstrip": false,
|
34 |
+
"normalized": false,
|
35 |
+
"rstrip": false,
|
36 |
+
"single_word": false
|
37 |
+
}
|
38 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,2184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"126080": {
|
6 |
+
"content": "<|startoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"126081": {
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"126082": {
|
22 |
+
"content": "[CLS]",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"126083": {
|
30 |
+
"content": "[gMASK]",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"126084": {
|
38 |
+
"content": "<|reserved_token_0|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"126085": {
|
46 |
+
"content": "<|reserved_token_1|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"126086": {
|
54 |
+
"content": "<|reserved_token_2|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"126087": {
|
62 |
+
"content": "<|reserved_token_3|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"126088": {
|
70 |
+
"content": "<|reserved_token_4|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"126089": {
|
78 |
+
"content": "<|reserved_token_5|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"126090": {
|
86 |
+
"content": "<|reserved_token_6|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"126091": {
|
94 |
+
"content": "<|reserved_token_7|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"126092": {
|
102 |
+
"content": "<|reserved_token_8|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"126093": {
|
110 |
+
"content": "<|reserved_token_9|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"126094": {
|
118 |
+
"content": "<|reserved_token_10|>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": true
|
124 |
+
},
|
125 |
+
"126095": {
|
126 |
+
"content": "<|reserved_token_11|>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": true
|
132 |
+
},
|
133 |
+
"126096": {
|
134 |
+
"content": "<|reserved_token_12|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": true
|
140 |
+
},
|
141 |
+
"126097": {
|
142 |
+
"content": "<|reserved_token_13|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": true
|
148 |
+
},
|
149 |
+
"126098": {
|
150 |
+
"content": "<|reserved_token_14|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": true
|
156 |
+
},
|
157 |
+
"126099": {
|
158 |
+
"content": "<|reserved_token_15|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": true
|
164 |
+
},
|
165 |
+
"126100": {
|
166 |
+
"content": "<|reserved_token_16|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": true
|
172 |
+
},
|
173 |
+
"126101": {
|
174 |
+
"content": "<|reserved_token_17|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": true
|
180 |
+
},
|
181 |
+
"126102": {
|
182 |
+
"content": "<|reserved_token_18|>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": true
|
188 |
+
},
|
189 |
+
"126103": {
|
190 |
+
"content": "<|reserved_token_19|>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": true
|
196 |
+
},
|
197 |
+
"126104": {
|
198 |
+
"content": "<|reserved_token_20|>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": true
|
204 |
+
},
|
205 |
+
"126105": {
|
206 |
+
"content": "<|reserved_token_21|>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": true
|
212 |
+
},
|
213 |
+
"126106": {
|
214 |
+
"content": "<|reserved_token_22|>",
|
215 |
+
"lstrip": false,
|
216 |
+
"normalized": false,
|
217 |
+
"rstrip": false,
|
218 |
+
"single_word": false,
|
219 |
+
"special": true
|
220 |
+
},
|
221 |
+
"126107": {
|
222 |
+
"content": "<|reserved_token_23|>",
|
223 |
+
"lstrip": false,
|
224 |
+
"normalized": false,
|
225 |
+
"rstrip": false,
|
226 |
+
"single_word": false,
|
227 |
+
"special": true
|
228 |
+
},
|
229 |
+
"126108": {
|
230 |
+
"content": "<|reserved_token_24|>",
|
231 |
+
"lstrip": false,
|
232 |
+
"normalized": false,
|
233 |
+
"rstrip": false,
|
234 |
+
"single_word": false,
|
235 |
+
"special": true
|
236 |
+
},
|
237 |
+
"126109": {
|
238 |
+
"content": "<|reserved_token_25|>",
|
239 |
+
"lstrip": false,
|
240 |
+
"normalized": false,
|
241 |
+
"rstrip": false,
|
242 |
+
"single_word": false,
|
243 |
+
"special": true
|
244 |
+
},
|
245 |
+
"126110": {
|
246 |
+
"content": "<|reserved_token_26|>",
|
247 |
+
"lstrip": false,
|
248 |
+
"normalized": false,
|
249 |
+
"rstrip": false,
|
250 |
+
"single_word": false,
|
251 |
+
"special": true
|
252 |
+
},
|
253 |
+
"126111": {
|
254 |
+
"content": "<|reserved_token_27|>",
|
255 |
+
"lstrip": false,
|
256 |
+
"normalized": false,
|
257 |
+
"rstrip": false,
|
258 |
+
"single_word": false,
|
259 |
+
"special": true
|
260 |
+
},
|
261 |
+
"126112": {
|
262 |
+
"content": "<|reserved_token_28|>",
|
263 |
+
"lstrip": false,
|
264 |
+
"normalized": false,
|
265 |
+
"rstrip": false,
|
266 |
+
"single_word": false,
|
267 |
+
"special": true
|
268 |
+
},
|
269 |
+
"126113": {
|
270 |
+
"content": "<|reserved_token_29|>",
|
271 |
+
"lstrip": false,
|
272 |
+
"normalized": false,
|
273 |
+
"rstrip": false,
|
274 |
+
"single_word": false,
|
275 |
+
"special": true
|
276 |
+
},
|
277 |
+
"126114": {
|
278 |
+
"content": "<|reserved_token_30|>",
|
279 |
+
"lstrip": false,
|
280 |
+
"normalized": false,
|
281 |
+
"rstrip": false,
|
282 |
+
"single_word": false,
|
283 |
+
"special": true
|
284 |
+
},
|
285 |
+
"126115": {
|
286 |
+
"content": "<|reserved_token_31|>",
|
287 |
+
"lstrip": false,
|
288 |
+
"normalized": false,
|
289 |
+
"rstrip": false,
|
290 |
+
"single_word": false,
|
291 |
+
"special": true
|
292 |
+
},
|
293 |
+
"126116": {
|
294 |
+
"content": "<|reserved_token_32|>",
|
295 |
+
"lstrip": false,
|
296 |
+
"normalized": false,
|
297 |
+
"rstrip": false,
|
298 |
+
"single_word": false,
|
299 |
+
"special": true
|
300 |
+
},
|
301 |
+
"126117": {
|
302 |
+
"content": "<|reserved_token_33|>",
|
303 |
+
"lstrip": false,
|
304 |
+
"normalized": false,
|
305 |
+
"rstrip": false,
|
306 |
+
"single_word": false,
|
307 |
+
"special": true
|
308 |
+
},
|
309 |
+
"126118": {
|
310 |
+
"content": "<|reserved_token_34|>",
|
311 |
+
"lstrip": false,
|
312 |
+
"normalized": false,
|
313 |
+
"rstrip": false,
|
314 |
+
"single_word": false,
|
315 |
+
"special": true
|
316 |
+
},
|
317 |
+
"126119": {
|
318 |
+
"content": "<|reserved_token_35|>",
|
319 |
+
"lstrip": false,
|
320 |
+
"normalized": false,
|
321 |
+
"rstrip": false,
|
322 |
+
"single_word": false,
|
323 |
+
"special": true
|
324 |
+
},
|
325 |
+
"126120": {
|
326 |
+
"content": "<|reserved_token_36|>",
|
327 |
+
"lstrip": false,
|
328 |
+
"normalized": false,
|
329 |
+
"rstrip": false,
|
330 |
+
"single_word": false,
|
331 |
+
"special": true
|
332 |
+
},
|
333 |
+
"126121": {
|
334 |
+
"content": "<|reserved_token_37|>",
|
335 |
+
"lstrip": false,
|
336 |
+
"normalized": false,
|
337 |
+
"rstrip": false,
|
338 |
+
"single_word": false,
|
339 |
+
"special": true
|
340 |
+
},
|
341 |
+
"126122": {
|
342 |
+
"content": "<|reserved_token_38|>",
|
343 |
+
"lstrip": false,
|
344 |
+
"normalized": false,
|
345 |
+
"rstrip": false,
|
346 |
+
"single_word": false,
|
347 |
+
"special": true
|
348 |
+
},
|
349 |
+
"126123": {
|
350 |
+
"content": "<|reserved_token_39|>",
|
351 |
+
"lstrip": false,
|
352 |
+
"normalized": false,
|
353 |
+
"rstrip": false,
|
354 |
+
"single_word": false,
|
355 |
+
"special": true
|
356 |
+
},
|
357 |
+
"126124": {
|
358 |
+
"content": "<|reserved_token_40|>",
|
359 |
+
"lstrip": false,
|
360 |
+
"normalized": false,
|
361 |
+
"rstrip": false,
|
362 |
+
"single_word": false,
|
363 |
+
"special": true
|
364 |
+
},
|
365 |
+
"126125": {
|
366 |
+
"content": "<|reserved_token_41|>",
|
367 |
+
"lstrip": false,
|
368 |
+
"normalized": false,
|
369 |
+
"rstrip": false,
|
370 |
+
"single_word": false,
|
371 |
+
"special": true
|
372 |
+
},
|
373 |
+
"126126": {
|
374 |
+
"content": "<|reserved_token_42|>",
|
375 |
+
"lstrip": false,
|
376 |
+
"normalized": false,
|
377 |
+
"rstrip": false,
|
378 |
+
"single_word": false,
|
379 |
+
"special": true
|
380 |
+
},
|
381 |
+
"126127": {
|
382 |
+
"content": "<|reserved_token_43|>",
|
383 |
+
"lstrip": false,
|
384 |
+
"normalized": false,
|
385 |
+
"rstrip": false,
|
386 |
+
"single_word": false,
|
387 |
+
"special": true
|
388 |
+
},
|
389 |
+
"126128": {
|
390 |
+
"content": "<|reserved_token_44|>",
|
391 |
+
"lstrip": false,
|
392 |
+
"normalized": false,
|
393 |
+
"rstrip": false,
|
394 |
+
"single_word": false,
|
395 |
+
"special": true
|
396 |
+
},
|
397 |
+
"126129": {
|
398 |
+
"content": "<|reserved_token_45|>",
|
399 |
+
"lstrip": false,
|
400 |
+
"normalized": false,
|
401 |
+
"rstrip": false,
|
402 |
+
"single_word": false,
|
403 |
+
"special": true
|
404 |
+
},
|
405 |
+
"126130": {
|
406 |
+
"content": "<|reserved_token_46|>",
|
407 |
+
"lstrip": false,
|
408 |
+
"normalized": false,
|
409 |
+
"rstrip": false,
|
410 |
+
"single_word": false,
|
411 |
+
"special": true
|
412 |
+
},
|
413 |
+
"126131": {
|
414 |
+
"content": "<|reserved_token_47|>",
|
415 |
+
"lstrip": false,
|
416 |
+
"normalized": false,
|
417 |
+
"rstrip": false,
|
418 |
+
"single_word": false,
|
419 |
+
"special": true
|
420 |
+
},
|
421 |
+
"126132": {
|
422 |
+
"content": "<|reserved_token_48|>",
|
423 |
+
"lstrip": false,
|
424 |
+
"normalized": false,
|
425 |
+
"rstrip": false,
|
426 |
+
"single_word": false,
|
427 |
+
"special": true
|
428 |
+
},
|
429 |
+
"126133": {
|
430 |
+
"content": "<|reserved_token_49|>",
|
431 |
+
"lstrip": false,
|
432 |
+
"normalized": false,
|
433 |
+
"rstrip": false,
|
434 |
+
"single_word": false,
|
435 |
+
"special": true
|
436 |
+
},
|
437 |
+
"126134": {
|
438 |
+
"content": "<|reserved_token_50|>",
|
439 |
+
"lstrip": false,
|
440 |
+
"normalized": false,
|
441 |
+
"rstrip": false,
|
442 |
+
"single_word": false,
|
443 |
+
"special": true
|
444 |
+
},
|
445 |
+
"126135": {
|
446 |
+
"content": "<|reserved_token_51|>",
|
447 |
+
"lstrip": false,
|
448 |
+
"normalized": false,
|
449 |
+
"rstrip": false,
|
450 |
+
"single_word": false,
|
451 |
+
"special": true
|
452 |
+
},
|
453 |
+
"126136": {
|
454 |
+
"content": "<|reserved_token_52|>",
|
455 |
+
"lstrip": false,
|
456 |
+
"normalized": false,
|
457 |
+
"rstrip": false,
|
458 |
+
"single_word": false,
|
459 |
+
"special": true
|
460 |
+
},
|
461 |
+
"126137": {
|
462 |
+
"content": "<|reserved_token_53|>",
|
463 |
+
"lstrip": false,
|
464 |
+
"normalized": false,
|
465 |
+
"rstrip": false,
|
466 |
+
"single_word": false,
|
467 |
+
"special": true
|
468 |
+
},
|
469 |
+
"126138": {
|
470 |
+
"content": "<|reserved_token_54|>",
|
471 |
+
"lstrip": false,
|
472 |
+
"normalized": false,
|
473 |
+
"rstrip": false,
|
474 |
+
"single_word": false,
|
475 |
+
"special": true
|
476 |
+
},
|
477 |
+
"126139": {
|
478 |
+
"content": "<|reserved_token_55|>",
|
479 |
+
"lstrip": false,
|
480 |
+
"normalized": false,
|
481 |
+
"rstrip": false,
|
482 |
+
"single_word": false,
|
483 |
+
"special": true
|
484 |
+
},
|
485 |
+
"126140": {
|
486 |
+
"content": "<|reserved_token_56|>",
|
487 |
+
"lstrip": false,
|
488 |
+
"normalized": false,
|
489 |
+
"rstrip": false,
|
490 |
+
"single_word": false,
|
491 |
+
"special": true
|
492 |
+
},
|
493 |
+
"126141": {
|
494 |
+
"content": "<|reserved_token_57|>",
|
495 |
+
"lstrip": false,
|
496 |
+
"normalized": false,
|
497 |
+
"rstrip": false,
|
498 |
+
"single_word": false,
|
499 |
+
"special": true
|
500 |
+
},
|
501 |
+
"126142": {
|
502 |
+
"content": "<|reserved_token_58|>",
|
503 |
+
"lstrip": false,
|
504 |
+
"normalized": false,
|
505 |
+
"rstrip": false,
|
506 |
+
"single_word": false,
|
507 |
+
"special": true
|
508 |
+
},
|
509 |
+
"126143": {
|
510 |
+
"content": "<|reserved_token_59|>",
|
511 |
+
"lstrip": false,
|
512 |
+
"normalized": false,
|
513 |
+
"rstrip": false,
|
514 |
+
"single_word": false,
|
515 |
+
"special": true
|
516 |
+
},
|
517 |
+
"126144": {
|
518 |
+
"content": "<|reserved_token_60|>",
|
519 |
+
"lstrip": false,
|
520 |
+
"normalized": false,
|
521 |
+
"rstrip": false,
|
522 |
+
"single_word": false,
|
523 |
+
"special": true
|
524 |
+
},
|
525 |
+
"126145": {
|
526 |
+
"content": "<|reserved_token_61|>",
|
527 |
+
"lstrip": false,
|
528 |
+
"normalized": false,
|
529 |
+
"rstrip": false,
|
530 |
+
"single_word": false,
|
531 |
+
"special": true
|
532 |
+
},
|
533 |
+
"126146": {
|
534 |
+
"content": "<|reserved_token_62|>",
|
535 |
+
"lstrip": false,
|
536 |
+
"normalized": false,
|
537 |
+
"rstrip": false,
|
538 |
+
"single_word": false,
|
539 |
+
"special": true
|
540 |
+
},
|
541 |
+
"126147": {
|
542 |
+
"content": "<|reserved_token_63|>",
|
543 |
+
"lstrip": false,
|
544 |
+
"normalized": false,
|
545 |
+
"rstrip": false,
|
546 |
+
"single_word": false,
|
547 |
+
"special": true
|
548 |
+
},
|
549 |
+
"126148": {
|
550 |
+
"content": "<|reserved_token_64|>",
|
551 |
+
"lstrip": false,
|
552 |
+
"normalized": false,
|
553 |
+
"rstrip": false,
|
554 |
+
"single_word": false,
|
555 |
+
"special": true
|
556 |
+
},
|
557 |
+
"126149": {
|
558 |
+
"content": "<|reserved_token_65|>",
|
559 |
+
"lstrip": false,
|
560 |
+
"normalized": false,
|
561 |
+
"rstrip": false,
|
562 |
+
"single_word": false,
|
563 |
+
"special": true
|
564 |
+
},
|
565 |
+
"126150": {
|
566 |
+
"content": "<|reserved_token_66|>",
|
567 |
+
"lstrip": false,
|
568 |
+
"normalized": false,
|
569 |
+
"rstrip": false,
|
570 |
+
"single_word": false,
|
571 |
+
"special": true
|
572 |
+
},
|
573 |
+
"126151": {
|
574 |
+
"content": "<|reserved_token_67|>",
|
575 |
+
"lstrip": false,
|
576 |
+
"normalized": false,
|
577 |
+
"rstrip": false,
|
578 |
+
"single_word": false,
|
579 |
+
"special": true
|
580 |
+
},
|
581 |
+
"126152": {
|
582 |
+
"content": "<|reserved_token_68|>",
|
583 |
+
"lstrip": false,
|
584 |
+
"normalized": false,
|
585 |
+
"rstrip": false,
|
586 |
+
"single_word": false,
|
587 |
+
"special": true
|
588 |
+
},
|
589 |
+
"126153": {
|
590 |
+
"content": "<|reserved_token_69|>",
|
591 |
+
"lstrip": false,
|
592 |
+
"normalized": false,
|
593 |
+
"rstrip": false,
|
594 |
+
"single_word": false,
|
595 |
+
"special": true
|
596 |
+
},
|
597 |
+
"126154": {
|
598 |
+
"content": "<|reserved_token_70|>",
|
599 |
+
"lstrip": false,
|
600 |
+
"normalized": false,
|
601 |
+
"rstrip": false,
|
602 |
+
"single_word": false,
|
603 |
+
"special": true
|
604 |
+
},
|
605 |
+
"126155": {
|
606 |
+
"content": "<|reserved_token_71|>",
|
607 |
+
"lstrip": false,
|
608 |
+
"normalized": false,
|
609 |
+
"rstrip": false,
|
610 |
+
"single_word": false,
|
611 |
+
"special": true
|
612 |
+
},
|
613 |
+
"126156": {
|
614 |
+
"content": "<|reserved_token_72|>",
|
615 |
+
"lstrip": false,
|
616 |
+
"normalized": false,
|
617 |
+
"rstrip": false,
|
618 |
+
"single_word": false,
|
619 |
+
"special": true
|
620 |
+
},
|
621 |
+
"126157": {
|
622 |
+
"content": "<|reserved_token_73|>",
|
623 |
+
"lstrip": false,
|
624 |
+
"normalized": false,
|
625 |
+
"rstrip": false,
|
626 |
+
"single_word": false,
|
627 |
+
"special": true
|
628 |
+
},
|
629 |
+
"126158": {
|
630 |
+
"content": "<|reserved_token_74|>",
|
631 |
+
"lstrip": false,
|
632 |
+
"normalized": false,
|
633 |
+
"rstrip": false,
|
634 |
+
"single_word": false,
|
635 |
+
"special": true
|
636 |
+
},
|
637 |
+
"126159": {
|
638 |
+
"content": "<|reserved_token_75|>",
|
639 |
+
"lstrip": false,
|
640 |
+
"normalized": false,
|
641 |
+
"rstrip": false,
|
642 |
+
"single_word": false,
|
643 |
+
"special": true
|
644 |
+
},
|
645 |
+
"126160": {
|
646 |
+
"content": "<|reserved_token_76|>",
|
647 |
+
"lstrip": false,
|
648 |
+
"normalized": false,
|
649 |
+
"rstrip": false,
|
650 |
+
"single_word": false,
|
651 |
+
"special": true
|
652 |
+
},
|
653 |
+
"126161": {
|
654 |
+
"content": "<|reserved_token_77|>",
|
655 |
+
"lstrip": false,
|
656 |
+
"normalized": false,
|
657 |
+
"rstrip": false,
|
658 |
+
"single_word": false,
|
659 |
+
"special": true
|
660 |
+
},
|
661 |
+
"126162": {
|
662 |
+
"content": "<|reserved_token_78|>",
|
663 |
+
"lstrip": false,
|
664 |
+
"normalized": false,
|
665 |
+
"rstrip": false,
|
666 |
+
"single_word": false,
|
667 |
+
"special": true
|
668 |
+
},
|
669 |
+
"126163": {
|
670 |
+
"content": "<|reserved_token_79|>",
|
671 |
+
"lstrip": false,
|
672 |
+
"normalized": false,
|
673 |
+
"rstrip": false,
|
674 |
+
"single_word": false,
|
675 |
+
"special": true
|
676 |
+
},
|
677 |
+
"126164": {
|
678 |
+
"content": "<|reserved_token_80|>",
|
679 |
+
"lstrip": false,
|
680 |
+
"normalized": false,
|
681 |
+
"rstrip": false,
|
682 |
+
"single_word": false,
|
683 |
+
"special": true
|
684 |
+
},
|
685 |
+
"126165": {
|
686 |
+
"content": "<|reserved_token_81|>",
|
687 |
+
"lstrip": false,
|
688 |
+
"normalized": false,
|
689 |
+
"rstrip": false,
|
690 |
+
"single_word": false,
|
691 |
+
"special": true
|
692 |
+
},
|
693 |
+
"126166": {
|
694 |
+
"content": "<|reserved_token_82|>",
|
695 |
+
"lstrip": false,
|
696 |
+
"normalized": false,
|
697 |
+
"rstrip": false,
|
698 |
+
"single_word": false,
|
699 |
+
"special": true
|
700 |
+
},
|
701 |
+
"126167": {
|
702 |
+
"content": "<|reserved_token_83|>",
|
703 |
+
"lstrip": false,
|
704 |
+
"normalized": false,
|
705 |
+
"rstrip": false,
|
706 |
+
"single_word": false,
|
707 |
+
"special": true
|
708 |
+
},
|
709 |
+
"126168": {
|
710 |
+
"content": "<|reserved_token_84|>",
|
711 |
+
"lstrip": false,
|
712 |
+
"normalized": false,
|
713 |
+
"rstrip": false,
|
714 |
+
"single_word": false,
|
715 |
+
"special": true
|
716 |
+
},
|
717 |
+
"126169": {
|
718 |
+
"content": "<|reserved_token_85|>",
|
719 |
+
"lstrip": false,
|
720 |
+
"normalized": false,
|
721 |
+
"rstrip": false,
|
722 |
+
"single_word": false,
|
723 |
+
"special": true
|
724 |
+
},
|
725 |
+
"126170": {
|
726 |
+
"content": "<|reserved_token_86|>",
|
727 |
+
"lstrip": false,
|
728 |
+
"normalized": false,
|
729 |
+
"rstrip": false,
|
730 |
+
"single_word": false,
|
731 |
+
"special": true
|
732 |
+
},
|
733 |
+
"126171": {
|
734 |
+
"content": "<|reserved_token_87|>",
|
735 |
+
"lstrip": false,
|
736 |
+
"normalized": false,
|
737 |
+
"rstrip": false,
|
738 |
+
"single_word": false,
|
739 |
+
"special": true
|
740 |
+
},
|
741 |
+
"126172": {
|
742 |
+
"content": "<|reserved_token_88|>",
|
743 |
+
"lstrip": false,
|
744 |
+
"normalized": false,
|
745 |
+
"rstrip": false,
|
746 |
+
"single_word": false,
|
747 |
+
"special": true
|
748 |
+
},
|
749 |
+
"126173": {
|
750 |
+
"content": "<|reserved_token_89|>",
|
751 |
+
"lstrip": false,
|
752 |
+
"normalized": false,
|
753 |
+
"rstrip": false,
|
754 |
+
"single_word": false,
|
755 |
+
"special": true
|
756 |
+
},
|
757 |
+
"126174": {
|
758 |
+
"content": "<|reserved_token_90|>",
|
759 |
+
"lstrip": false,
|
760 |
+
"normalized": false,
|
761 |
+
"rstrip": false,
|
762 |
+
"single_word": false,
|
763 |
+
"special": true
|
764 |
+
},
|
765 |
+
"126175": {
|
766 |
+
"content": "<|reserved_token_91|>",
|
767 |
+
"lstrip": false,
|
768 |
+
"normalized": false,
|
769 |
+
"rstrip": false,
|
770 |
+
"single_word": false,
|
771 |
+
"special": true
|
772 |
+
},
|
773 |
+
"126176": {
|
774 |
+
"content": "<|reserved_token_92|>",
|
775 |
+
"lstrip": false,
|
776 |
+
"normalized": false,
|
777 |
+
"rstrip": false,
|
778 |
+
"single_word": false,
|
779 |
+
"special": true
|
780 |
+
},
|
781 |
+
"126177": {
|
782 |
+
"content": "<|reserved_token_93|>",
|
783 |
+
"lstrip": false,
|
784 |
+
"normalized": false,
|
785 |
+
"rstrip": false,
|
786 |
+
"single_word": false,
|
787 |
+
"special": true
|
788 |
+
},
|
789 |
+
"126178": {
|
790 |
+
"content": "<|reserved_token_94|>",
|
791 |
+
"lstrip": false,
|
792 |
+
"normalized": false,
|
793 |
+
"rstrip": false,
|
794 |
+
"single_word": false,
|
795 |
+
"special": true
|
796 |
+
},
|
797 |
+
"126179": {
|
798 |
+
"content": "<|reserved_token_95|>",
|
799 |
+
"lstrip": false,
|
800 |
+
"normalized": false,
|
801 |
+
"rstrip": false,
|
802 |
+
"single_word": false,
|
803 |
+
"special": true
|
804 |
+
},
|
805 |
+
"126180": {
|
806 |
+
"content": "<|reserved_token_96|>",
|
807 |
+
"lstrip": false,
|
808 |
+
"normalized": false,
|
809 |
+
"rstrip": false,
|
810 |
+
"single_word": false,
|
811 |
+
"special": true
|
812 |
+
},
|
813 |
+
"126181": {
|
814 |
+
"content": "<|reserved_token_97|>",
|
815 |
+
"lstrip": false,
|
816 |
+
"normalized": false,
|
817 |
+
"rstrip": false,
|
818 |
+
"single_word": false,
|
819 |
+
"special": true
|
820 |
+
},
|
821 |
+
"126182": {
|
822 |
+
"content": "<|reserved_token_98|>",
|
823 |
+
"lstrip": false,
|
824 |
+
"normalized": false,
|
825 |
+
"rstrip": false,
|
826 |
+
"single_word": false,
|
827 |
+
"special": true
|
828 |
+
},
|
829 |
+
"126183": {
|
830 |
+
"content": "<|reserved_token_99|>",
|
831 |
+
"lstrip": false,
|
832 |
+
"normalized": false,
|
833 |
+
"rstrip": false,
|
834 |
+
"single_word": false,
|
835 |
+
"special": true
|
836 |
+
},
|
837 |
+
"126184": {
|
838 |
+
"content": "<|reserved_token_100|>",
|
839 |
+
"lstrip": false,
|
840 |
+
"normalized": false,
|
841 |
+
"rstrip": false,
|
842 |
+
"single_word": false,
|
843 |
+
"special": true
|
844 |
+
},
|
845 |
+
"126185": {
|
846 |
+
"content": "<|reserved_token_101|>",
|
847 |
+
"lstrip": false,
|
848 |
+
"normalized": false,
|
849 |
+
"rstrip": false,
|
850 |
+
"single_word": false,
|
851 |
+
"special": true
|
852 |
+
},
|
853 |
+
"126186": {
|
854 |
+
"content": "<|reserved_token_102|>",
|
855 |
+
"lstrip": false,
|
856 |
+
"normalized": false,
|
857 |
+
"rstrip": false,
|
858 |
+
"single_word": false,
|
859 |
+
"special": true
|
860 |
+
},
|
861 |
+
"126187": {
|
862 |
+
"content": "<|reserved_token_103|>",
|
863 |
+
"lstrip": false,
|
864 |
+
"normalized": false,
|
865 |
+
"rstrip": false,
|
866 |
+
"single_word": false,
|
867 |
+
"special": true
|
868 |
+
},
|
869 |
+
"126188": {
|
870 |
+
"content": "<|reserved_token_104|>",
|
871 |
+
"lstrip": false,
|
872 |
+
"normalized": false,
|
873 |
+
"rstrip": false,
|
874 |
+
"single_word": false,
|
875 |
+
"special": true
|
876 |
+
},
|
877 |
+
"126189": {
|
878 |
+
"content": "<|reserved_token_105|>",
|
879 |
+
"lstrip": false,
|
880 |
+
"normalized": false,
|
881 |
+
"rstrip": false,
|
882 |
+
"single_word": false,
|
883 |
+
"special": true
|
884 |
+
},
|
885 |
+
"126190": {
|
886 |
+
"content": "<|reserved_token_106|>",
|
887 |
+
"lstrip": false,
|
888 |
+
"normalized": false,
|
889 |
+
"rstrip": false,
|
890 |
+
"single_word": false,
|
891 |
+
"special": true
|
892 |
+
},
|
893 |
+
"126191": {
|
894 |
+
"content": "<|reserved_token_107|>",
|
895 |
+
"lstrip": false,
|
896 |
+
"normalized": false,
|
897 |
+
"rstrip": false,
|
898 |
+
"single_word": false,
|
899 |
+
"special": true
|
900 |
+
},
|
901 |
+
"126192": {
|
902 |
+
"content": "<|reserved_token_108|>",
|
903 |
+
"lstrip": false,
|
904 |
+
"normalized": false,
|
905 |
+
"rstrip": false,
|
906 |
+
"single_word": false,
|
907 |
+
"special": true
|
908 |
+
},
|
909 |
+
"126193": {
|
910 |
+
"content": "<|reserved_token_109|>",
|
911 |
+
"lstrip": false,
|
912 |
+
"normalized": false,
|
913 |
+
"rstrip": false,
|
914 |
+
"single_word": false,
|
915 |
+
"special": true
|
916 |
+
},
|
917 |
+
"126194": {
|
918 |
+
"content": "<|reserved_token_110|>",
|
919 |
+
"lstrip": false,
|
920 |
+
"normalized": false,
|
921 |
+
"rstrip": false,
|
922 |
+
"single_word": false,
|
923 |
+
"special": true
|
924 |
+
},
|
925 |
+
"126195": {
|
926 |
+
"content": "<|reserved_token_111|>",
|
927 |
+
"lstrip": false,
|
928 |
+
"normalized": false,
|
929 |
+
"rstrip": false,
|
930 |
+
"single_word": false,
|
931 |
+
"special": true
|
932 |
+
},
|
933 |
+
"126196": {
|
934 |
+
"content": "<|reserved_token_112|>",
|
935 |
+
"lstrip": false,
|
936 |
+
"normalized": false,
|
937 |
+
"rstrip": false,
|
938 |
+
"single_word": false,
|
939 |
+
"special": true
|
940 |
+
},
|
941 |
+
"126197": {
|
942 |
+
"content": "<|reserved_token_113|>",
|
943 |
+
"lstrip": false,
|
944 |
+
"normalized": false,
|
945 |
+
"rstrip": false,
|
946 |
+
"single_word": false,
|
947 |
+
"special": true
|
948 |
+
},
|
949 |
+
"126198": {
|
950 |
+
"content": "<|reserved_token_114|>",
|
951 |
+
"lstrip": false,
|
952 |
+
"normalized": false,
|
953 |
+
"rstrip": false,
|
954 |
+
"single_word": false,
|
955 |
+
"special": true
|
956 |
+
},
|
957 |
+
"126199": {
|
958 |
+
"content": "<|reserved_token_115|>",
|
959 |
+
"lstrip": false,
|
960 |
+
"normalized": false,
|
961 |
+
"rstrip": false,
|
962 |
+
"single_word": false,
|
963 |
+
"special": true
|
964 |
+
},
|
965 |
+
"126200": {
|
966 |
+
"content": "<|reserved_token_116|>",
|
967 |
+
"lstrip": false,
|
968 |
+
"normalized": false,
|
969 |
+
"rstrip": false,
|
970 |
+
"single_word": false,
|
971 |
+
"special": true
|
972 |
+
},
|
973 |
+
"126201": {
|
974 |
+
"content": "<|reserved_token_117|>",
|
975 |
+
"lstrip": false,
|
976 |
+
"normalized": false,
|
977 |
+
"rstrip": false,
|
978 |
+
"single_word": false,
|
979 |
+
"special": true
|
980 |
+
},
|
981 |
+
"126202": {
|
982 |
+
"content": "<|reserved_token_118|>",
|
983 |
+
"lstrip": false,
|
984 |
+
"normalized": false,
|
985 |
+
"rstrip": false,
|
986 |
+
"single_word": false,
|
987 |
+
"special": true
|
988 |
+
},
|
989 |
+
"126203": {
|
990 |
+
"content": "<|reserved_token_119|>",
|
991 |
+
"lstrip": false,
|
992 |
+
"normalized": false,
|
993 |
+
"rstrip": false,
|
994 |
+
"single_word": false,
|
995 |
+
"special": true
|
996 |
+
},
|
997 |
+
"126204": {
|
998 |
+
"content": "<|reserved_token_120|>",
|
999 |
+
"lstrip": false,
|
1000 |
+
"normalized": false,
|
1001 |
+
"rstrip": false,
|
1002 |
+
"single_word": false,
|
1003 |
+
"special": true
|
1004 |
+
},
|
1005 |
+
"126205": {
|
1006 |
+
"content": "<|reserved_token_121|>",
|
1007 |
+
"lstrip": false,
|
1008 |
+
"normalized": false,
|
1009 |
+
"rstrip": false,
|
1010 |
+
"single_word": false,
|
1011 |
+
"special": true
|
1012 |
+
},
|
1013 |
+
"126206": {
|
1014 |
+
"content": "<|reserved_token_122|>",
|
1015 |
+
"lstrip": false,
|
1016 |
+
"normalized": false,
|
1017 |
+
"rstrip": false,
|
1018 |
+
"single_word": false,
|
1019 |
+
"special": true
|
1020 |
+
},
|
1021 |
+
"126207": {
|
1022 |
+
"content": "<|reserved_token_123|>",
|
1023 |
+
"lstrip": false,
|
1024 |
+
"normalized": false,
|
1025 |
+
"rstrip": false,
|
1026 |
+
"single_word": false,
|
1027 |
+
"special": true
|
1028 |
+
},
|
1029 |
+
"126208": {
|
1030 |
+
"content": "<|reserved_token_124|>",
|
1031 |
+
"lstrip": false,
|
1032 |
+
"normalized": false,
|
1033 |
+
"rstrip": false,
|
1034 |
+
"single_word": false,
|
1035 |
+
"special": true
|
1036 |
+
},
|
1037 |
+
"126209": {
|
1038 |
+
"content": "<|reserved_token_125|>",
|
1039 |
+
"lstrip": false,
|
1040 |
+
"normalized": false,
|
1041 |
+
"rstrip": false,
|
1042 |
+
"single_word": false,
|
1043 |
+
"special": true
|
1044 |
+
},
|
1045 |
+
"126210": {
|
1046 |
+
"content": "<|reserved_token_126|>",
|
1047 |
+
"lstrip": false,
|
1048 |
+
"normalized": false,
|
1049 |
+
"rstrip": false,
|
1050 |
+
"single_word": false,
|
1051 |
+
"special": true
|
1052 |
+
},
|
1053 |
+
"126211": {
|
1054 |
+
"content": "<|reserved_token_127|>",
|
1055 |
+
"lstrip": false,
|
1056 |
+
"normalized": false,
|
1057 |
+
"rstrip": false,
|
1058 |
+
"single_word": false,
|
1059 |
+
"special": true
|
1060 |
+
},
|
1061 |
+
"126212": {
|
1062 |
+
"content": "<|reserved_token_128|>",
|
1063 |
+
"lstrip": false,
|
1064 |
+
"normalized": false,
|
1065 |
+
"rstrip": false,
|
1066 |
+
"single_word": false,
|
1067 |
+
"special": true
|
1068 |
+
},
|
1069 |
+
"126213": {
|
1070 |
+
"content": "<|reserved_token_129|>",
|
1071 |
+
"lstrip": false,
|
1072 |
+
"normalized": false,
|
1073 |
+
"rstrip": false,
|
1074 |
+
"single_word": false,
|
1075 |
+
"special": true
|
1076 |
+
},
|
1077 |
+
"126214": {
|
1078 |
+
"content": "<|reserved_token_130|>",
|
1079 |
+
"lstrip": false,
|
1080 |
+
"normalized": false,
|
1081 |
+
"rstrip": false,
|
1082 |
+
"single_word": false,
|
1083 |
+
"special": true
|
1084 |
+
},
|
1085 |
+
"126215": {
|
1086 |
+
"content": "<|reserved_token_131|>",
|
1087 |
+
"lstrip": false,
|
1088 |
+
"normalized": false,
|
1089 |
+
"rstrip": false,
|
1090 |
+
"single_word": false,
|
1091 |
+
"special": true
|
1092 |
+
},
|
1093 |
+
"126216": {
|
1094 |
+
"content": "<|reserved_token_132|>",
|
1095 |
+
"lstrip": false,
|
1096 |
+
"normalized": false,
|
1097 |
+
"rstrip": false,
|
1098 |
+
"single_word": false,
|
1099 |
+
"special": true
|
1100 |
+
},
|
1101 |
+
"126217": {
|
1102 |
+
"content": "<|reserved_token_133|>",
|
1103 |
+
"lstrip": false,
|
1104 |
+
"normalized": false,
|
1105 |
+
"rstrip": false,
|
1106 |
+
"single_word": false,
|
1107 |
+
"special": true
|
1108 |
+
},
|
1109 |
+
"126218": {
|
1110 |
+
"content": "<|reserved_token_134|>",
|
1111 |
+
"lstrip": false,
|
1112 |
+
"normalized": false,
|
1113 |
+
"rstrip": false,
|
1114 |
+
"single_word": false,
|
1115 |
+
"special": true
|
1116 |
+
},
|
1117 |
+
"126219": {
|
1118 |
+
"content": "<|reserved_token_135|>",
|
1119 |
+
"lstrip": false,
|
1120 |
+
"normalized": false,
|
1121 |
+
"rstrip": false,
|
1122 |
+
"single_word": false,
|
1123 |
+
"special": true
|
1124 |
+
},
|
1125 |
+
"126220": {
|
1126 |
+
"content": "<|reserved_token_136|>",
|
1127 |
+
"lstrip": false,
|
1128 |
+
"normalized": false,
|
1129 |
+
"rstrip": false,
|
1130 |
+
"single_word": false,
|
1131 |
+
"special": true
|
1132 |
+
},
|
1133 |
+
"126221": {
|
1134 |
+
"content": "<|reserved_token_137|>",
|
1135 |
+
"lstrip": false,
|
1136 |
+
"normalized": false,
|
1137 |
+
"rstrip": false,
|
1138 |
+
"single_word": false,
|
1139 |
+
"special": true
|
1140 |
+
},
|
1141 |
+
"126222": {
|
1142 |
+
"content": "<|reserved_token_138|>",
|
1143 |
+
"lstrip": false,
|
1144 |
+
"normalized": false,
|
1145 |
+
"rstrip": false,
|
1146 |
+
"single_word": false,
|
1147 |
+
"special": true
|
1148 |
+
},
|
1149 |
+
"126223": {
|
1150 |
+
"content": "<|reserved_token_139|>",
|
1151 |
+
"lstrip": false,
|
1152 |
+
"normalized": false,
|
1153 |
+
"rstrip": false,
|
1154 |
+
"single_word": false,
|
1155 |
+
"special": true
|
1156 |
+
},
|
1157 |
+
"126224": {
|
1158 |
+
"content": "<|reserved_token_140|>",
|
1159 |
+
"lstrip": false,
|
1160 |
+
"normalized": false,
|
1161 |
+
"rstrip": false,
|
1162 |
+
"single_word": false,
|
1163 |
+
"special": true
|
1164 |
+
},
|
1165 |
+
"126225": {
|
1166 |
+
"content": "<|reserved_token_141|>",
|
1167 |
+
"lstrip": false,
|
1168 |
+
"normalized": false,
|
1169 |
+
"rstrip": false,
|
1170 |
+
"single_word": false,
|
1171 |
+
"special": true
|
1172 |
+
},
|
1173 |
+
"126226": {
|
1174 |
+
"content": "<|reserved_token_142|>",
|
1175 |
+
"lstrip": false,
|
1176 |
+
"normalized": false,
|
1177 |
+
"rstrip": false,
|
1178 |
+
"single_word": false,
|
1179 |
+
"special": true
|
1180 |
+
},
|
1181 |
+
"126227": {
|
1182 |
+
"content": "<|reserved_token_143|>",
|
1183 |
+
"lstrip": false,
|
1184 |
+
"normalized": false,
|
1185 |
+
"rstrip": false,
|
1186 |
+
"single_word": false,
|
1187 |
+
"special": true
|
1188 |
+
},
|
1189 |
+
"126228": {
|
1190 |
+
"content": "<|reserved_token_144|>",
|
1191 |
+
"lstrip": false,
|
1192 |
+
"normalized": false,
|
1193 |
+
"rstrip": false,
|
1194 |
+
"single_word": false,
|
1195 |
+
"special": true
|
1196 |
+
},
|
1197 |
+
"126229": {
|
1198 |
+
"content": "<|reserved_token_145|>",
|
1199 |
+
"lstrip": false,
|
1200 |
+
"normalized": false,
|
1201 |
+
"rstrip": false,
|
1202 |
+
"single_word": false,
|
1203 |
+
"special": true
|
1204 |
+
},
|
1205 |
+
"126230": {
|
1206 |
+
"content": "<|reserved_token_146|>",
|
1207 |
+
"lstrip": false,
|
1208 |
+
"normalized": false,
|
1209 |
+
"rstrip": false,
|
1210 |
+
"single_word": false,
|
1211 |
+
"special": true
|
1212 |
+
},
|
1213 |
+
"126231": {
|
1214 |
+
"content": "<|reserved_token_147|>",
|
1215 |
+
"lstrip": false,
|
1216 |
+
"normalized": false,
|
1217 |
+
"rstrip": false,
|
1218 |
+
"single_word": false,
|
1219 |
+
"special": true
|
1220 |
+
},
|
1221 |
+
"126232": {
|
1222 |
+
"content": "<|reserved_token_148|>",
|
1223 |
+
"lstrip": false,
|
1224 |
+
"normalized": false,
|
1225 |
+
"rstrip": false,
|
1226 |
+
"single_word": false,
|
1227 |
+
"special": true
|
1228 |
+
},
|
1229 |
+
"126233": {
|
1230 |
+
"content": "<|reserved_token_149|>",
|
1231 |
+
"lstrip": false,
|
1232 |
+
"normalized": false,
|
1233 |
+
"rstrip": false,
|
1234 |
+
"single_word": false,
|
1235 |
+
"special": true
|
1236 |
+
},
|
1237 |
+
"126234": {
|
1238 |
+
"content": "<|reserved_token_150|>",
|
1239 |
+
"lstrip": false,
|
1240 |
+
"normalized": false,
|
1241 |
+
"rstrip": false,
|
1242 |
+
"single_word": false,
|
1243 |
+
"special": true
|
1244 |
+
},
|
1245 |
+
"126235": {
|
1246 |
+
"content": "<|reserved_token_151|>",
|
1247 |
+
"lstrip": false,
|
1248 |
+
"normalized": false,
|
1249 |
+
"rstrip": false,
|
1250 |
+
"single_word": false,
|
1251 |
+
"special": true
|
1252 |
+
},
|
1253 |
+
"126236": {
|
1254 |
+
"content": "<|reserved_token_152|>",
|
1255 |
+
"lstrip": false,
|
1256 |
+
"normalized": false,
|
1257 |
+
"rstrip": false,
|
1258 |
+
"single_word": false,
|
1259 |
+
"special": true
|
1260 |
+
},
|
1261 |
+
"126237": {
|
1262 |
+
"content": "<|reserved_token_153|>",
|
1263 |
+
"lstrip": false,
|
1264 |
+
"normalized": false,
|
1265 |
+
"rstrip": false,
|
1266 |
+
"single_word": false,
|
1267 |
+
"special": true
|
1268 |
+
},
|
1269 |
+
"126238": {
|
1270 |
+
"content": "<|reserved_token_154|>",
|
1271 |
+
"lstrip": false,
|
1272 |
+
"normalized": false,
|
1273 |
+
"rstrip": false,
|
1274 |
+
"single_word": false,
|
1275 |
+
"special": true
|
1276 |
+
},
|
1277 |
+
"126239": {
|
1278 |
+
"content": "<|reserved_token_155|>",
|
1279 |
+
"lstrip": false,
|
1280 |
+
"normalized": false,
|
1281 |
+
"rstrip": false,
|
1282 |
+
"single_word": false,
|
1283 |
+
"special": true
|
1284 |
+
},
|
1285 |
+
"126240": {
|
1286 |
+
"content": "<|reserved_token_156|>",
|
1287 |
+
"lstrip": false,
|
1288 |
+
"normalized": false,
|
1289 |
+
"rstrip": false,
|
1290 |
+
"single_word": false,
|
1291 |
+
"special": true
|
1292 |
+
},
|
1293 |
+
"126241": {
|
1294 |
+
"content": "<|reserved_token_157|>",
|
1295 |
+
"lstrip": false,
|
1296 |
+
"normalized": false,
|
1297 |
+
"rstrip": false,
|
1298 |
+
"single_word": false,
|
1299 |
+
"special": true
|
1300 |
+
},
|
1301 |
+
"126242": {
|
1302 |
+
"content": "<|reserved_token_158|>",
|
1303 |
+
"lstrip": false,
|
1304 |
+
"normalized": false,
|
1305 |
+
"rstrip": false,
|
1306 |
+
"single_word": false,
|
1307 |
+
"special": true
|
1308 |
+
},
|
1309 |
+
"126243": {
|
1310 |
+
"content": "<|reserved_token_159|>",
|
1311 |
+
"lstrip": false,
|
1312 |
+
"normalized": false,
|
1313 |
+
"rstrip": false,
|
1314 |
+
"single_word": false,
|
1315 |
+
"special": true
|
1316 |
+
},
|
1317 |
+
"126244": {
|
1318 |
+
"content": "<|reserved_token_160|>",
|
1319 |
+
"lstrip": false,
|
1320 |
+
"normalized": false,
|
1321 |
+
"rstrip": false,
|
1322 |
+
"single_word": false,
|
1323 |
+
"special": true
|
1324 |
+
},
|
1325 |
+
"126245": {
|
1326 |
+
"content": "<|reserved_token_161|>",
|
1327 |
+
"lstrip": false,
|
1328 |
+
"normalized": false,
|
1329 |
+
"rstrip": false,
|
1330 |
+
"single_word": false,
|
1331 |
+
"special": true
|
1332 |
+
},
|
1333 |
+
"126246": {
|
1334 |
+
"content": "<|reserved_token_162|>",
|
1335 |
+
"lstrip": false,
|
1336 |
+
"normalized": false,
|
1337 |
+
"rstrip": false,
|
1338 |
+
"single_word": false,
|
1339 |
+
"special": true
|
1340 |
+
},
|
1341 |
+
"126247": {
|
1342 |
+
"content": "<|reserved_token_163|>",
|
1343 |
+
"lstrip": false,
|
1344 |
+
"normalized": false,
|
1345 |
+
"rstrip": false,
|
1346 |
+
"single_word": false,
|
1347 |
+
"special": true
|
1348 |
+
},
|
1349 |
+
"126248": {
|
1350 |
+
"content": "<|reserved_token_164|>",
|
1351 |
+
"lstrip": false,
|
1352 |
+
"normalized": false,
|
1353 |
+
"rstrip": false,
|
1354 |
+
"single_word": false,
|
1355 |
+
"special": true
|
1356 |
+
},
|
1357 |
+
"126249": {
|
1358 |
+
"content": "<|reserved_token_165|>",
|
1359 |
+
"lstrip": false,
|
1360 |
+
"normalized": false,
|
1361 |
+
"rstrip": false,
|
1362 |
+
"single_word": false,
|
1363 |
+
"special": true
|
1364 |
+
},
|
1365 |
+
"126250": {
|
1366 |
+
"content": "<|reserved_token_166|>",
|
1367 |
+
"lstrip": false,
|
1368 |
+
"normalized": false,
|
1369 |
+
"rstrip": false,
|
1370 |
+
"single_word": false,
|
1371 |
+
"special": true
|
1372 |
+
},
|
1373 |
+
"126251": {
|
1374 |
+
"content": "<|reserved_token_167|>",
|
1375 |
+
"lstrip": false,
|
1376 |
+
"normalized": false,
|
1377 |
+
"rstrip": false,
|
1378 |
+
"single_word": false,
|
1379 |
+
"special": true
|
1380 |
+
},
|
1381 |
+
"126252": {
|
1382 |
+
"content": "<|reserved_token_168|>",
|
1383 |
+
"lstrip": false,
|
1384 |
+
"normalized": false,
|
1385 |
+
"rstrip": false,
|
1386 |
+
"single_word": false,
|
1387 |
+
"special": true
|
1388 |
+
},
|
1389 |
+
"126253": {
|
1390 |
+
"content": "<|reserved_token_169|>",
|
1391 |
+
"lstrip": false,
|
1392 |
+
"normalized": false,
|
1393 |
+
"rstrip": false,
|
1394 |
+
"single_word": false,
|
1395 |
+
"special": true
|
1396 |
+
},
|
1397 |
+
"126254": {
|
1398 |
+
"content": "<|reserved_token_170|>",
|
1399 |
+
"lstrip": false,
|
1400 |
+
"normalized": false,
|
1401 |
+
"rstrip": false,
|
1402 |
+
"single_word": false,
|
1403 |
+
"special": true
|
1404 |
+
},
|
1405 |
+
"126255": {
|
1406 |
+
"content": "<|reserved_token_171|>",
|
1407 |
+
"lstrip": false,
|
1408 |
+
"normalized": false,
|
1409 |
+
"rstrip": false,
|
1410 |
+
"single_word": false,
|
1411 |
+
"special": true
|
1412 |
+
},
|
1413 |
+
"126256": {
|
1414 |
+
"content": "<|reserved_token_172|>",
|
1415 |
+
"lstrip": false,
|
1416 |
+
"normalized": false,
|
1417 |
+
"rstrip": false,
|
1418 |
+
"single_word": false,
|
1419 |
+
"special": true
|
1420 |
+
},
|
1421 |
+
"126257": {
|
1422 |
+
"content": "<|reserved_token_173|>",
|
1423 |
+
"lstrip": false,
|
1424 |
+
"normalized": false,
|
1425 |
+
"rstrip": false,
|
1426 |
+
"single_word": false,
|
1427 |
+
"special": true
|
1428 |
+
},
|
1429 |
+
"126258": {
|
1430 |
+
"content": "<|reserved_token_174|>",
|
1431 |
+
"lstrip": false,
|
1432 |
+
"normalized": false,
|
1433 |
+
"rstrip": false,
|
1434 |
+
"single_word": false,
|
1435 |
+
"special": true
|
1436 |
+
},
|
1437 |
+
"126259": {
|
1438 |
+
"content": "<|reserved_token_175|>",
|
1439 |
+
"lstrip": false,
|
1440 |
+
"normalized": false,
|
1441 |
+
"rstrip": false,
|
1442 |
+
"single_word": false,
|
1443 |
+
"special": true
|
1444 |
+
},
|
1445 |
+
"126260": {
|
1446 |
+
"content": "<|reserved_token_176|>",
|
1447 |
+
"lstrip": false,
|
1448 |
+
"normalized": false,
|
1449 |
+
"rstrip": false,
|
1450 |
+
"single_word": false,
|
1451 |
+
"special": true
|
1452 |
+
},
|
1453 |
+
"126261": {
|
1454 |
+
"content": "<|reserved_token_177|>",
|
1455 |
+
"lstrip": false,
|
1456 |
+
"normalized": false,
|
1457 |
+
"rstrip": false,
|
1458 |
+
"single_word": false,
|
1459 |
+
"special": true
|
1460 |
+
},
|
1461 |
+
"126262": {
|
1462 |
+
"content": "<|reserved_token_178|>",
|
1463 |
+
"lstrip": false,
|
1464 |
+
"normalized": false,
|
1465 |
+
"rstrip": false,
|
1466 |
+
"single_word": false,
|
1467 |
+
"special": true
|
1468 |
+
},
|
1469 |
+
"126263": {
|
1470 |
+
"content": "<|reserved_token_179|>",
|
1471 |
+
"lstrip": false,
|
1472 |
+
"normalized": false,
|
1473 |
+
"rstrip": false,
|
1474 |
+
"single_word": false,
|
1475 |
+
"special": true
|
1476 |
+
},
|
1477 |
+
"126264": {
|
1478 |
+
"content": "<|reserved_token_180|>",
|
1479 |
+
"lstrip": false,
|
1480 |
+
"normalized": false,
|
1481 |
+
"rstrip": false,
|
1482 |
+
"single_word": false,
|
1483 |
+
"special": true
|
1484 |
+
},
|
1485 |
+
"126265": {
|
1486 |
+
"content": "<|reserved_token_181|>",
|
1487 |
+
"lstrip": false,
|
1488 |
+
"normalized": false,
|
1489 |
+
"rstrip": false,
|
1490 |
+
"single_word": false,
|
1491 |
+
"special": true
|
1492 |
+
},
|
1493 |
+
"126266": {
|
1494 |
+
"content": "<|reserved_token_182|>",
|
1495 |
+
"lstrip": false,
|
1496 |
+
"normalized": false,
|
1497 |
+
"rstrip": false,
|
1498 |
+
"single_word": false,
|
1499 |
+
"special": true
|
1500 |
+
},
|
1501 |
+
"126267": {
|
1502 |
+
"content": "<|reserved_token_183|>",
|
1503 |
+
"lstrip": false,
|
1504 |
+
"normalized": false,
|
1505 |
+
"rstrip": false,
|
1506 |
+
"single_word": false,
|
1507 |
+
"special": true
|
1508 |
+
},
|
1509 |
+
"126268": {
|
1510 |
+
"content": "<|reserved_token_184|>",
|
1511 |
+
"lstrip": false,
|
1512 |
+
"normalized": false,
|
1513 |
+
"rstrip": false,
|
1514 |
+
"single_word": false,
|
1515 |
+
"special": true
|
1516 |
+
},
|
1517 |
+
"126269": {
|
1518 |
+
"content": "<|reserved_token_185|>",
|
1519 |
+
"lstrip": false,
|
1520 |
+
"normalized": false,
|
1521 |
+
"rstrip": false,
|
1522 |
+
"single_word": false,
|
1523 |
+
"special": true
|
1524 |
+
},
|
1525 |
+
"126270": {
|
1526 |
+
"content": "<|reserved_token_186|>",
|
1527 |
+
"lstrip": false,
|
1528 |
+
"normalized": false,
|
1529 |
+
"rstrip": false,
|
1530 |
+
"single_word": false,
|
1531 |
+
"special": true
|
1532 |
+
},
|
1533 |
+
"126271": {
|
1534 |
+
"content": "<|reserved_token_187|>",
|
1535 |
+
"lstrip": false,
|
1536 |
+
"normalized": false,
|
1537 |
+
"rstrip": false,
|
1538 |
+
"single_word": false,
|
1539 |
+
"special": true
|
1540 |
+
},
|
1541 |
+
"126272": {
|
1542 |
+
"content": "<|reserved_token_188|>",
|
1543 |
+
"lstrip": false,
|
1544 |
+
"normalized": false,
|
1545 |
+
"rstrip": false,
|
1546 |
+
"single_word": false,
|
1547 |
+
"special": true
|
1548 |
+
},
|
1549 |
+
"126273": {
|
1550 |
+
"content": "<|reserved_token_189|>",
|
1551 |
+
"lstrip": false,
|
1552 |
+
"normalized": false,
|
1553 |
+
"rstrip": false,
|
1554 |
+
"single_word": false,
|
1555 |
+
"special": true
|
1556 |
+
},
|
1557 |
+
"126274": {
|
1558 |
+
"content": "<|reserved_token_190|>",
|
1559 |
+
"lstrip": false,
|
1560 |
+
"normalized": false,
|
1561 |
+
"rstrip": false,
|
1562 |
+
"single_word": false,
|
1563 |
+
"special": true
|
1564 |
+
},
|
1565 |
+
"126275": {
|
1566 |
+
"content": "<|reserved_token_191|>",
|
1567 |
+
"lstrip": false,
|
1568 |
+
"normalized": false,
|
1569 |
+
"rstrip": false,
|
1570 |
+
"single_word": false,
|
1571 |
+
"special": true
|
1572 |
+
},
|
1573 |
+
"126276": {
|
1574 |
+
"content": "<|reserved_token_192|>",
|
1575 |
+
"lstrip": false,
|
1576 |
+
"normalized": false,
|
1577 |
+
"rstrip": false,
|
1578 |
+
"single_word": false,
|
1579 |
+
"special": true
|
1580 |
+
},
|
1581 |
+
"126277": {
|
1582 |
+
"content": "<|reserved_token_193|>",
|
1583 |
+
"lstrip": false,
|
1584 |
+
"normalized": false,
|
1585 |
+
"rstrip": false,
|
1586 |
+
"single_word": false,
|
1587 |
+
"special": true
|
1588 |
+
},
|
1589 |
+
"126278": {
|
1590 |
+
"content": "<|reserved_token_194|>",
|
1591 |
+
"lstrip": false,
|
1592 |
+
"normalized": false,
|
1593 |
+
"rstrip": false,
|
1594 |
+
"single_word": false,
|
1595 |
+
"special": true
|
1596 |
+
},
|
1597 |
+
"126279": {
|
1598 |
+
"content": "<|reserved_token_195|>",
|
1599 |
+
"lstrip": false,
|
1600 |
+
"normalized": false,
|
1601 |
+
"rstrip": false,
|
1602 |
+
"single_word": false,
|
1603 |
+
"special": true
|
1604 |
+
},
|
1605 |
+
"126280": {
|
1606 |
+
"content": "<|reserved_token_196|>",
|
1607 |
+
"lstrip": false,
|
1608 |
+
"normalized": false,
|
1609 |
+
"rstrip": false,
|
1610 |
+
"single_word": false,
|
1611 |
+
"special": true
|
1612 |
+
},
|
1613 |
+
"126281": {
|
1614 |
+
"content": "<|reserved_token_197|>",
|
1615 |
+
"lstrip": false,
|
1616 |
+
"normalized": false,
|
1617 |
+
"rstrip": false,
|
1618 |
+
"single_word": false,
|
1619 |
+
"special": true
|
1620 |
+
},
|
1621 |
+
"126282": {
|
1622 |
+
"content": "<|reserved_token_198|>",
|
1623 |
+
"lstrip": false,
|
1624 |
+
"normalized": false,
|
1625 |
+
"rstrip": false,
|
1626 |
+
"single_word": false,
|
1627 |
+
"special": true
|
1628 |
+
},
|
1629 |
+
"126283": {
|
1630 |
+
"content": "<|reserved_token_199|>",
|
1631 |
+
"lstrip": false,
|
1632 |
+
"normalized": false,
|
1633 |
+
"rstrip": false,
|
1634 |
+
"single_word": false,
|
1635 |
+
"special": true
|
1636 |
+
},
|
1637 |
+
"126284": {
|
1638 |
+
"content": "<|reserved_token_200|>",
|
1639 |
+
"lstrip": false,
|
1640 |
+
"normalized": false,
|
1641 |
+
"rstrip": false,
|
1642 |
+
"single_word": false,
|
1643 |
+
"special": true
|
1644 |
+
},
|
1645 |
+
"126285": {
|
1646 |
+
"content": "<|reserved_token_201|>",
|
1647 |
+
"lstrip": false,
|
1648 |
+
"normalized": false,
|
1649 |
+
"rstrip": false,
|
1650 |
+
"single_word": false,
|
1651 |
+
"special": true
|
1652 |
+
},
|
1653 |
+
"126286": {
|
1654 |
+
"content": "<|reserved_token_202|>",
|
1655 |
+
"lstrip": false,
|
1656 |
+
"normalized": false,
|
1657 |
+
"rstrip": false,
|
1658 |
+
"single_word": false,
|
1659 |
+
"special": true
|
1660 |
+
},
|
1661 |
+
"126287": {
|
1662 |
+
"content": "<|reserved_token_203|>",
|
1663 |
+
"lstrip": false,
|
1664 |
+
"normalized": false,
|
1665 |
+
"rstrip": false,
|
1666 |
+
"single_word": false,
|
1667 |
+
"special": true
|
1668 |
+
},
|
1669 |
+
"126288": {
|
1670 |
+
"content": "<|reserved_token_204|>",
|
1671 |
+
"lstrip": false,
|
1672 |
+
"normalized": false,
|
1673 |
+
"rstrip": false,
|
1674 |
+
"single_word": false,
|
1675 |
+
"special": true
|
1676 |
+
},
|
1677 |
+
"126289": {
|
1678 |
+
"content": "<|reserved_token_205|>",
|
1679 |
+
"lstrip": false,
|
1680 |
+
"normalized": false,
|
1681 |
+
"rstrip": false,
|
1682 |
+
"single_word": false,
|
1683 |
+
"special": true
|
1684 |
+
},
|
1685 |
+
"126290": {
|
1686 |
+
"content": "<|reserved_token_206|>",
|
1687 |
+
"lstrip": false,
|
1688 |
+
"normalized": false,
|
1689 |
+
"rstrip": false,
|
1690 |
+
"single_word": false,
|
1691 |
+
"special": true
|
1692 |
+
},
|
1693 |
+
"126291": {
|
1694 |
+
"content": "<|reserved_token_207|>",
|
1695 |
+
"lstrip": false,
|
1696 |
+
"normalized": false,
|
1697 |
+
"rstrip": false,
|
1698 |
+
"single_word": false,
|
1699 |
+
"special": true
|
1700 |
+
},
|
1701 |
+
"126292": {
|
1702 |
+
"content": "<|reserved_token_208|>",
|
1703 |
+
"lstrip": false,
|
1704 |
+
"normalized": false,
|
1705 |
+
"rstrip": false,
|
1706 |
+
"single_word": false,
|
1707 |
+
"special": true
|
1708 |
+
},
|
1709 |
+
"126293": {
|
1710 |
+
"content": "<|reserved_token_209|>",
|
1711 |
+
"lstrip": false,
|
1712 |
+
"normalized": false,
|
1713 |
+
"rstrip": false,
|
1714 |
+
"single_word": false,
|
1715 |
+
"special": true
|
1716 |
+
},
|
1717 |
+
"126294": {
|
1718 |
+
"content": "<|reserved_token_210|>",
|
1719 |
+
"lstrip": false,
|
1720 |
+
"normalized": false,
|
1721 |
+
"rstrip": false,
|
1722 |
+
"single_word": false,
|
1723 |
+
"special": true
|
1724 |
+
},
|
1725 |
+
"126295": {
|
1726 |
+
"content": "<|reserved_token_211|>",
|
1727 |
+
"lstrip": false,
|
1728 |
+
"normalized": false,
|
1729 |
+
"rstrip": false,
|
1730 |
+
"single_word": false,
|
1731 |
+
"special": true
|
1732 |
+
},
|
1733 |
+
"126296": {
|
1734 |
+
"content": "<|reserved_token_212|>",
|
1735 |
+
"lstrip": false,
|
1736 |
+
"normalized": false,
|
1737 |
+
"rstrip": false,
|
1738 |
+
"single_word": false,
|
1739 |
+
"special": true
|
1740 |
+
},
|
1741 |
+
"126297": {
|
1742 |
+
"content": "<|reserved_token_213|>",
|
1743 |
+
"lstrip": false,
|
1744 |
+
"normalized": false,
|
1745 |
+
"rstrip": false,
|
1746 |
+
"single_word": false,
|
1747 |
+
"special": true
|
1748 |
+
},
|
1749 |
+
"126298": {
|
1750 |
+
"content": "<|reserved_token_214|>",
|
1751 |
+
"lstrip": false,
|
1752 |
+
"normalized": false,
|
1753 |
+
"rstrip": false,
|
1754 |
+
"single_word": false,
|
1755 |
+
"special": true
|
1756 |
+
},
|
1757 |
+
"126299": {
|
1758 |
+
"content": "<|reserved_token_215|>",
|
1759 |
+
"lstrip": false,
|
1760 |
+
"normalized": false,
|
1761 |
+
"rstrip": false,
|
1762 |
+
"single_word": false,
|
1763 |
+
"special": true
|
1764 |
+
},
|
1765 |
+
"126300": {
|
1766 |
+
"content": "<|reserved_token_216|>",
|
1767 |
+
"lstrip": false,
|
1768 |
+
"normalized": false,
|
1769 |
+
"rstrip": false,
|
1770 |
+
"single_word": false,
|
1771 |
+
"special": true
|
1772 |
+
},
|
1773 |
+
"126301": {
|
1774 |
+
"content": "<|reserved_token_217|>",
|
1775 |
+
"lstrip": false,
|
1776 |
+
"normalized": false,
|
1777 |
+
"rstrip": false,
|
1778 |
+
"single_word": false,
|
1779 |
+
"special": true
|
1780 |
+
},
|
1781 |
+
"126302": {
|
1782 |
+
"content": "<|reserved_token_218|>",
|
1783 |
+
"lstrip": false,
|
1784 |
+
"normalized": false,
|
1785 |
+
"rstrip": false,
|
1786 |
+
"single_word": false,
|
1787 |
+
"special": true
|
1788 |
+
},
|
1789 |
+
"126303": {
|
1790 |
+
"content": "<|reserved_token_219|>",
|
1791 |
+
"lstrip": false,
|
1792 |
+
"normalized": false,
|
1793 |
+
"rstrip": false,
|
1794 |
+
"single_word": false,
|
1795 |
+
"special": true
|
1796 |
+
},
|
1797 |
+
"126304": {
|
1798 |
+
"content": "<|reserved_token_220|>",
|
1799 |
+
"lstrip": false,
|
1800 |
+
"normalized": false,
|
1801 |
+
"rstrip": false,
|
1802 |
+
"single_word": false,
|
1803 |
+
"special": true
|
1804 |
+
},
|
1805 |
+
"126305": {
|
1806 |
+
"content": "<|reserved_token_221|>",
|
1807 |
+
"lstrip": false,
|
1808 |
+
"normalized": false,
|
1809 |
+
"rstrip": false,
|
1810 |
+
"single_word": false,
|
1811 |
+
"special": true
|
1812 |
+
},
|
1813 |
+
"126306": {
|
1814 |
+
"content": "<|reserved_token_222|>",
|
1815 |
+
"lstrip": false,
|
1816 |
+
"normalized": false,
|
1817 |
+
"rstrip": false,
|
1818 |
+
"single_word": false,
|
1819 |
+
"special": true
|
1820 |
+
},
|
1821 |
+
"126307": {
|
1822 |
+
"content": "<|reserved_token_223|>",
|
1823 |
+
"lstrip": false,
|
1824 |
+
"normalized": false,
|
1825 |
+
"rstrip": false,
|
1826 |
+
"single_word": false,
|
1827 |
+
"special": true
|
1828 |
+
},
|
1829 |
+
"126308": {
|
1830 |
+
"content": "<|reserved_token_224|>",
|
1831 |
+
"lstrip": false,
|
1832 |
+
"normalized": false,
|
1833 |
+
"rstrip": false,
|
1834 |
+
"single_word": false,
|
1835 |
+
"special": true
|
1836 |
+
},
|
1837 |
+
"126309": {
|
1838 |
+
"content": "<|reserved_token_225|>",
|
1839 |
+
"lstrip": false,
|
1840 |
+
"normalized": false,
|
1841 |
+
"rstrip": false,
|
1842 |
+
"single_word": false,
|
1843 |
+
"special": true
|
1844 |
+
},
|
1845 |
+
"126310": {
|
1846 |
+
"content": "<|reserved_token_226|>",
|
1847 |
+
"lstrip": false,
|
1848 |
+
"normalized": false,
|
1849 |
+
"rstrip": false,
|
1850 |
+
"single_word": false,
|
1851 |
+
"special": true
|
1852 |
+
},
|
1853 |
+
"126311": {
|
1854 |
+
"content": "<|reserved_token_227|>",
|
1855 |
+
"lstrip": false,
|
1856 |
+
"normalized": false,
|
1857 |
+
"rstrip": false,
|
1858 |
+
"single_word": false,
|
1859 |
+
"special": true
|
1860 |
+
},
|
1861 |
+
"126312": {
|
1862 |
+
"content": "<|reserved_token_228|>",
|
1863 |
+
"lstrip": false,
|
1864 |
+
"normalized": false,
|
1865 |
+
"rstrip": false,
|
1866 |
+
"single_word": false,
|
1867 |
+
"special": true
|
1868 |
+
},
|
1869 |
+
"126313": {
|
1870 |
+
"content": "<|reserved_token_229|>",
|
1871 |
+
"lstrip": false,
|
1872 |
+
"normalized": false,
|
1873 |
+
"rstrip": false,
|
1874 |
+
"single_word": false,
|
1875 |
+
"special": true
|
1876 |
+
},
|
1877 |
+
"126314": {
|
1878 |
+
"content": "<|reserved_token_230|>",
|
1879 |
+
"lstrip": false,
|
1880 |
+
"normalized": false,
|
1881 |
+
"rstrip": false,
|
1882 |
+
"single_word": false,
|
1883 |
+
"special": true
|
1884 |
+
},
|
1885 |
+
"126315": {
|
1886 |
+
"content": "<|reserved_token_231|>",
|
1887 |
+
"lstrip": false,
|
1888 |
+
"normalized": false,
|
1889 |
+
"rstrip": false,
|
1890 |
+
"single_word": false,
|
1891 |
+
"special": true
|
1892 |
+
},
|
1893 |
+
"126316": {
|
1894 |
+
"content": "<|reserved_token_232|>",
|
1895 |
+
"lstrip": false,
|
1896 |
+
"normalized": false,
|
1897 |
+
"rstrip": false,
|
1898 |
+
"single_word": false,
|
1899 |
+
"special": true
|
1900 |
+
},
|
1901 |
+
"126317": {
|
1902 |
+
"content": "<|reserved_token_233|>",
|
1903 |
+
"lstrip": false,
|
1904 |
+
"normalized": false,
|
1905 |
+
"rstrip": false,
|
1906 |
+
"single_word": false,
|
1907 |
+
"special": true
|
1908 |
+
},
|
1909 |
+
"126318": {
|
1910 |
+
"content": "<|reserved_token_234|>",
|
1911 |
+
"lstrip": false,
|
1912 |
+
"normalized": false,
|
1913 |
+
"rstrip": false,
|
1914 |
+
"single_word": false,
|
1915 |
+
"special": true
|
1916 |
+
},
|
1917 |
+
"126319": {
|
1918 |
+
"content": "<|reserved_token_235|>",
|
1919 |
+
"lstrip": false,
|
1920 |
+
"normalized": false,
|
1921 |
+
"rstrip": false,
|
1922 |
+
"single_word": false,
|
1923 |
+
"special": true
|
1924 |
+
},
|
1925 |
+
"126320": {
|
1926 |
+
"content": "<|reserved_token_236|>",
|
1927 |
+
"lstrip": false,
|
1928 |
+
"normalized": false,
|
1929 |
+
"rstrip": false,
|
1930 |
+
"single_word": false,
|
1931 |
+
"special": true
|
1932 |
+
},
|
1933 |
+
"126321": {
|
1934 |
+
"content": "<|reserved_token_237|>",
|
1935 |
+
"lstrip": false,
|
1936 |
+
"normalized": false,
|
1937 |
+
"rstrip": false,
|
1938 |
+
"single_word": false,
|
1939 |
+
"special": true
|
1940 |
+
},
|
1941 |
+
"126322": {
|
1942 |
+
"content": "<|reserved_token_238|>",
|
1943 |
+
"lstrip": false,
|
1944 |
+
"normalized": false,
|
1945 |
+
"rstrip": false,
|
1946 |
+
"single_word": false,
|
1947 |
+
"special": true
|
1948 |
+
},
|
1949 |
+
"126323": {
|
1950 |
+
"content": "<|reserved_token_239|>",
|
1951 |
+
"lstrip": false,
|
1952 |
+
"normalized": false,
|
1953 |
+
"rstrip": false,
|
1954 |
+
"single_word": false,
|
1955 |
+
"special": true
|
1956 |
+
},
|
1957 |
+
"126324": {
|
1958 |
+
"content": "<|reserved_token_240|>",
|
1959 |
+
"lstrip": false,
|
1960 |
+
"normalized": false,
|
1961 |
+
"rstrip": false,
|
1962 |
+
"single_word": false,
|
1963 |
+
"special": true
|
1964 |
+
},
|
1965 |
+
"126325": {
|
1966 |
+
"content": "<|reserved_token_241|>",
|
1967 |
+
"lstrip": false,
|
1968 |
+
"normalized": false,
|
1969 |
+
"rstrip": false,
|
1970 |
+
"single_word": false,
|
1971 |
+
"special": true
|
1972 |
+
},
|
1973 |
+
"126326": {
|
1974 |
+
"content": "<|reserved_token_242|>",
|
1975 |
+
"lstrip": false,
|
1976 |
+
"normalized": false,
|
1977 |
+
"rstrip": false,
|
1978 |
+
"single_word": false,
|
1979 |
+
"special": true
|
1980 |
+
},
|
1981 |
+
"126327": {
|
1982 |
+
"content": "<|reserved_token_243|>",
|
1983 |
+
"lstrip": false,
|
1984 |
+
"normalized": false,
|
1985 |
+
"rstrip": false,
|
1986 |
+
"single_word": false,
|
1987 |
+
"special": true
|
1988 |
+
},
|
1989 |
+
"126328": {
|
1990 |
+
"content": "<|reserved_token_244|>",
|
1991 |
+
"lstrip": false,
|
1992 |
+
"normalized": false,
|
1993 |
+
"rstrip": false,
|
1994 |
+
"single_word": false,
|
1995 |
+
"special": true
|
1996 |
+
},
|
1997 |
+
"126329": {
|
1998 |
+
"content": "<|reserved_token_245|>",
|
1999 |
+
"lstrip": false,
|
2000 |
+
"normalized": false,
|
2001 |
+
"rstrip": false,
|
2002 |
+
"single_word": false,
|
2003 |
+
"special": true
|
2004 |
+
},
|
2005 |
+
"126330": {
|
2006 |
+
"content": "<|reserved_token_246|>",
|
2007 |
+
"lstrip": false,
|
2008 |
+
"normalized": false,
|
2009 |
+
"rstrip": false,
|
2010 |
+
"single_word": false,
|
2011 |
+
"special": true
|
2012 |
+
},
|
2013 |
+
"126331": {
|
2014 |
+
"content": "<|reserved_token_247|>",
|
2015 |
+
"lstrip": false,
|
2016 |
+
"normalized": false,
|
2017 |
+
"rstrip": false,
|
2018 |
+
"single_word": false,
|
2019 |
+
"special": true
|
2020 |
+
},
|
2021 |
+
"126332": {
|
2022 |
+
"content": "<|reserved_token_248|>",
|
2023 |
+
"lstrip": false,
|
2024 |
+
"normalized": false,
|
2025 |
+
"rstrip": false,
|
2026 |
+
"single_word": false,
|
2027 |
+
"special": true
|
2028 |
+
},
|
2029 |
+
"126333": {
|
2030 |
+
"content": "<|reserved_token_249|>",
|
2031 |
+
"lstrip": false,
|
2032 |
+
"normalized": false,
|
2033 |
+
"rstrip": false,
|
2034 |
+
"single_word": false,
|
2035 |
+
"special": true
|
2036 |
+
},
|
2037 |
+
"126334": {
|
2038 |
+
"content": "<|reserved_token_250|>",
|
2039 |
+
"lstrip": false,
|
2040 |
+
"normalized": false,
|
2041 |
+
"rstrip": false,
|
2042 |
+
"single_word": false,
|
2043 |
+
"special": true
|
2044 |
+
},
|
2045 |
+
"126335": {
|
2046 |
+
"content": "<|reserved_token_251|>",
|
2047 |
+
"lstrip": false,
|
2048 |
+
"normalized": false,
|
2049 |
+
"rstrip": false,
|
2050 |
+
"single_word": false,
|
2051 |
+
"special": true
|
2052 |
+
},
|
2053 |
+
"126336": {
|
2054 |
+
"content": "<|mdm_mask|>",
|
2055 |
+
"lstrip": false,
|
2056 |
+
"normalized": false,
|
2057 |
+
"rstrip": false,
|
2058 |
+
"single_word": false,
|
2059 |
+
"special": true
|
2060 |
+
},
|
2061 |
+
"126337": {
|
2062 |
+
"content": "<|reserved_token_253|>",
|
2063 |
+
"lstrip": false,
|
2064 |
+
"normalized": false,
|
2065 |
+
"rstrip": false,
|
2066 |
+
"single_word": false,
|
2067 |
+
"special": true
|
2068 |
+
},
|
2069 |
+
"126338": {
|
2070 |
+
"content": "<|reserved_token_254|>",
|
2071 |
+
"lstrip": false,
|
2072 |
+
"normalized": false,
|
2073 |
+
"rstrip": false,
|
2074 |
+
"single_word": false,
|
2075 |
+
"special": true
|
2076 |
+
},
|
2077 |
+
"126339": {
|
2078 |
+
"content": "<|reserved_token_255|>",
|
2079 |
+
"lstrip": false,
|
2080 |
+
"normalized": false,
|
2081 |
+
"rstrip": false,
|
2082 |
+
"single_word": false,
|
2083 |
+
"special": true
|
2084 |
+
},
|
2085 |
+
"126340": {
|
2086 |
+
"content": "<role>",
|
2087 |
+
"lstrip": false,
|
2088 |
+
"normalized": false,
|
2089 |
+
"rstrip": false,
|
2090 |
+
"single_word": false,
|
2091 |
+
"special": true
|
2092 |
+
},
|
2093 |
+
"126341": {
|
2094 |
+
"content": "</role>",
|
2095 |
+
"lstrip": false,
|
2096 |
+
"normalized": false,
|
2097 |
+
"rstrip": false,
|
2098 |
+
"single_word": false,
|
2099 |
+
"special": true
|
2100 |
+
},
|
2101 |
+
"126342": {
|
2102 |
+
"content": "<|arithmetic_start|>",
|
2103 |
+
"lstrip": false,
|
2104 |
+
"normalized": false,
|
2105 |
+
"rstrip": false,
|
2106 |
+
"single_word": false,
|
2107 |
+
"special": true
|
2108 |
+
},
|
2109 |
+
"126343": {
|
2110 |
+
"content": "<|arithmetic_end|>",
|
2111 |
+
"lstrip": false,
|
2112 |
+
"normalized": false,
|
2113 |
+
"rstrip": false,
|
2114 |
+
"single_word": false,
|
2115 |
+
"special": true
|
2116 |
+
},
|
2117 |
+
"126344": {
|
2118 |
+
"content": "<|number_start|>",
|
2119 |
+
"lstrip": false,
|
2120 |
+
"normalized": false,
|
2121 |
+
"rstrip": false,
|
2122 |
+
"single_word": false,
|
2123 |
+
"special": true
|
2124 |
+
},
|
2125 |
+
"126345": {
|
2126 |
+
"content": "<|number_end|>",
|
2127 |
+
"lstrip": false,
|
2128 |
+
"normalized": false,
|
2129 |
+
"rstrip": false,
|
2130 |
+
"single_word": false,
|
2131 |
+
"special": true
|
2132 |
+
},
|
2133 |
+
"126346": {
|
2134 |
+
"content": "<|start_header_id|>",
|
2135 |
+
"lstrip": false,
|
2136 |
+
"normalized": false,
|
2137 |
+
"rstrip": false,
|
2138 |
+
"single_word": false,
|
2139 |
+
"special": true
|
2140 |
+
},
|
2141 |
+
"126347": {
|
2142 |
+
"content": "<|end_header_id|>",
|
2143 |
+
"lstrip": false,
|
2144 |
+
"normalized": false,
|
2145 |
+
"rstrip": false,
|
2146 |
+
"single_word": false,
|
2147 |
+
"special": true
|
2148 |
+
},
|
2149 |
+
"126348": {
|
2150 |
+
"content": "<|eot_id|>",
|
2151 |
+
"lstrip": false,
|
2152 |
+
"normalized": false,
|
2153 |
+
"rstrip": false,
|
2154 |
+
"single_word": false,
|
2155 |
+
"special": true
|
2156 |
+
}
|
2157 |
+
},
|
2158 |
+
"additional_special_tokens": [
|
2159 |
+
"<role>",
|
2160 |
+
"</role>",
|
2161 |
+
"<|arithmetic_start|>",
|
2162 |
+
"<|arithmetic_end|>",
|
2163 |
+
"<|number_start|>",
|
2164 |
+
"<|number_end|>"
|
2165 |
+
],
|
2166 |
+
"bos_token": "<|startoftext|>",
|
2167 |
+
"chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}",
|
2168 |
+
"clean_up_tokenization_spaces": false,
|
2169 |
+
"cls_token": "[CLS]",
|
2170 |
+
"eos_token": "<|endoftext|>",
|
2171 |
+
"extra_special_tokens": {},
|
2172 |
+
"fast_tokenizer": true,
|
2173 |
+
"gmask_token": "[gMASK]",
|
2174 |
+
"merges_file": null,
|
2175 |
+
"model_input_names": [
|
2176 |
+
"input_ids",
|
2177 |
+
"attention_mask"
|
2178 |
+
],
|
2179 |
+
"model_max_length": 4096,
|
2180 |
+
"pad_token": "<|endoftext|>",
|
2181 |
+
"padding_side": "right",
|
2182 |
+
"tokenizer_class": "PreTrainedTokenizer",
|
2183 |
+
"trust_remote_code": true
|
2184 |
+
}
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|