--- license: llama2 datasets: - wikimedia/wikipedia - stingning/ultrachat --- 結合兩個數據庫來做微調模型來達到知識問答和聊天的機器人 - wikimedia/wikipedia - stingning/ultrachat 1.效率:透過使用GPU加速、LoRA、梯度累積和混合精度訓練(FP16),最大化運算資源和訓練速度。 2.適應性:透過LoRA對模型的特定組件進行微調,它可以以減少參數達到(30%)以更新更有效地適應目標任務的預訓練模型。 ## api使用方法: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("j40pl7lly/fine-tuning-chat-liu") model = AutoModelForCausalLM.from_pretrained("j40pl7lly/fine-tuning-chat-liu") ``` ## Reference If you use this model and love it, use this to cite it 🤗 ## Citation ``` @misc{privacy_faceemotionrecognition_system, title={Fine-tuned LLM model based on open source mistral-7B}, author={Liu Hsin Kuo}, year={2024}, } ```