--- library_name: transformers base_model: ai-forever/ruBert-large tags: - generated_from_trainer datasets: - universal_dependencies metrics: - precision - recall - f1 - accuracy model-index: - name: ruBert-large-upos results: - task: name: Token Classification type: token-classification dataset: name: universal_dependencies type: universal_dependencies config: ru_syntagrus split: validation args: ru_syntagrus metrics: - name: Precision type: precision value: 0.8307441967265208 - name: Recall type: recall value: 0.7502322735093846 - name: F1 type: f1 value: 0.783084706036028 - name: Accuracy type: accuracy value: 0.868562326706389 --- # ruBert-large-upos This model is a fine-tuned version of [ai-forever/ruBert-large](https://huggingface.co/ai-forever/ruBert-large) on the universal_dependencies dataset. It achieves the following results on the evaluation set: - Loss: 0.4344 - Precision: 0.8307 - Recall: 0.7502 - F1: 0.7831 - Accuracy: 0.8686 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 338 | 0.4759 | 0.7967 | 0.7249 | 0.7532 | 0.8557 | | No log | 2.0 | 676 | 0.4344 | 0.8307 | 0.7502 | 0.7831 | 0.8686 | | No log | 3.0 | 1014 | 0.6906 | 0.7842 | 0.7480 | 0.7563 | 0.8674 | | No log | 4.0 | 1352 | 0.4757 | 0.8185 | 0.7578 | 0.7777 | 0.8816 | | No log | 5.0 | 1690 | 0.6291 | 0.7791 | 0.7721 | 0.7670 | 0.8792 | | No log | 6.0 | 2028 | 0.6466 | 0.7967 | 0.7677 | 0.7721 | 0.8863 | | No log | 7.0 | 2366 | 0.7072 | 0.7751 | 0.7700 | 0.7704 | 0.8809 | | No log | 8.0 | 2704 | 0.7623 | 0.7957 | 0.7678 | 0.7749 | 0.8838 | | No log | 9.0 | 3042 | 0.7458 | 0.7922 | 0.7716 | 0.7773 | 0.8873 | | No log | 10.0 | 3380 | 0.7560 | 0.7916 | 0.7709 | 0.7767 | 0.8869 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1