--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-large-mms-1b-uyghur-latin results: [] language: - ug --- # wav2vec2-large-mms-1b-uyghur-latin This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the None dataset. It achieves the following best results on the evaluation set: - Best Wer: 30.8949% - Best Cer: 5.9823 % ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Cer Ortho | |:-------------:|:------:|:----:|:---------------:|:---------:|:---------:| | 0.3425 | 1.0006 | 1313 | 0.3081 | 35.3122 | 6.8424 | | 0.3218 | 2.0011 | 2626 | 0.2771 | 31.7204 | 6.1840 | | 0.3012 | 3.0017 | 3939 | 0.2739 | 30.8949 | 5.9823 | | 0.2961 | 3.9989 | 5248 | 0.2771 | 31.7116 | 6.1806 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3