--- license: mit library_name: transformers pipeline_tag: text-generation datasets: - yulan-team/YuLan-Mini-Datasets - HuggingFaceFW/fineweb-edu - bigcode/the-stack-v2 - mlfoundations/dclm-baseline-1.0 - math-ai/AutoMathText - gair-prox/open-web-math-pro - RUC-AIBOX/long_form_thought_data_5k - internlm/Lean-Workbook - internlm/Lean-Github - deepseek-ai/DeepSeek-Prover-V1 - ScalableMath/Lean-STaR-base - ScalableMath/Lean-STaR-plus - ScalableMath/Lean-CoT-base - ScalableMath/Lean-CoT-plus - opencsg/chinese-fineweb-edu - liwu/MNBVC - vikp/textbook_quality_programming - HuggingFaceTB/smollm-corpus - OpenCoder-LLM/opc-annealing-corpus - OpenCoder-LLM/opc-sft-stage1 - OpenCoder-LLM/opc-sft-stage2 - XinyaoHu/AMPS_mathematica - deepmind/math_dataset - mrfakename/basic-math-10m - microsoft/orca-math-word-problems-200k - AI-MO/NuminaMath-CoT - HuggingFaceTB/cosmopedia - MU-NLPC/Calc-ape210k - manu/project_gutenberg - storytracer/LoC-PD-Books - allenai/dolma language: - en - zh tags: - code - math - llama-cpp - gguf-my-repo arxiv: 2412.17743 base_model: yulan-team/YuLan-Mini model-index: - name: YuLan-Mini results: - task: type: text-generation dataset: name: HumanEval type: openai_humaneval metrics: - type: pass@1 value: 0.64 name: pass@1 verified: false - task: type: text-generation dataset: name: MBPP type: mbpp metrics: - type: pass@1 value: 0.659 name: pass@1 verified: false - task: type: text-generation dataset: name: MATH-500 type: math-500 metrics: - type: maj@1 value: 0.378 name: maj@1 verified: false - task: type: text-generation dataset: name: GSM8K type: gsm8k metrics: - type: maj@1 value: 0.684 name: maj@1 verified: false --- # itlwas/YuLan-Mini-Q4_K_M-GGUF This model was converted to GGUF format from [`yulan-team/YuLan-Mini`](https://huggingface.co/yulan-team/YuLan-Mini) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/yulan-team/YuLan-Mini) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo itlwas/YuLan-Mini-Q4_K_M-GGUF --hf-file yulan-mini-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo itlwas/YuLan-Mini-Q4_K_M-GGUF --hf-file yulan-mini-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo itlwas/YuLan-Mini-Q4_K_M-GGUF --hf-file yulan-mini-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo itlwas/YuLan-Mini-Q4_K_M-GGUF --hf-file yulan-mini-q4_k_m.gguf -c 2048 ```