--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards base_model: - Qwen/Qwen3-1.7B datasets: [] languages: - en library_name: transformers metrics: [] pipeline_tag: text-generation tags: [] --- # Model Card for ismaelR/(complete) This model was finetuned by performing GRPO ## Model Details ### Model Description - **Developed by:** Orange - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** English - **License:** [More Information Needed] - **Finetuned from model [optional]:** Qwen/Qwen3-1.7B - **Date [optional]:** 2025-07-21 21:48:00 ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use This model can be used with the `transformers` library using `pipeline` abstraction as follows: ```python import torch from transformers import pipeline model_id = "Orange/Qwen-2.5-O.5B-regexp" pipe = pipeline( "text-generation", model=model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "system", "content": "You are chatbot specialized on Unknown domain."}, {"role": "user", "content": "Can you give a sample of your specialized knowledge?"}, ] outputs = pipe( messages, max_new_tokens=256, ) print(outputs[0]["generated_text"][-1]) ``` ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details This model was finetuned with [Orange internal fine tuning tools](https://gitlab.tech.orange/NEPAL/knowledge/orangelm/lm-adaptation/) with the Docker Image tagged `0.1.1` in the [registry](https://gitlab.tech.orange/NEPAL/knowledge/orangelm/lm-adaptation/container_registry/84664) and the following configuration file: #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact Thanks to [Ismaƫl Rousseau](mailto:ismael.rousseau@orange.com) for adding this model.