File size: 7,399 Bytes
8e1010d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn

from transformers import AutoConfig, AutoModelForCausalLM

from modeling_qwen import *
from configuration_qwen import Qwen2Config

from transformers.modeling_outputs import CausalLMOutputWithPast

from llava_arch import LlavaMetaModel, LlavaMetaForCausalLM


class GroundQwenConfig(Qwen2Config):
    model_type = "ground_qwen"


class LlavaQwenModel(LlavaMetaModel, Qwen2Model):
    config_class = GroundQwenConfig

    def __init__(self, config: Qwen2Config):
        super(LlavaQwenModel, self).__init__(config)

class GroundQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
    config_class = GroundQwenConfig
    supports_gradient_checkpointing = True

    def __init__(self, config):
        super(Qwen2ForCausalLM, self).__init__(config)
        self.model = LlavaQwenModel(config)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.vocab_size = config.vocab_size

        # Initialize weights and apply final processing
        self.post_init()
    
    def get_model(self):
        return self.model

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, LlavaQwenModel):
            module.gradient_checkpointing = value

    def forward_grounding(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        qs_ids: Optional[torch.LongTensor] = None,
        qs_mask: Optional[torch.Tensor] = None,
        time_labels: Optional[torch.FloatTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        projector: Optional[torch.LongTensor] = None,
        select_layer: Optional[int] = None,
        return_simi: Optional[bool] = False,
        return_dict: Optional[bool] = None,
    ) -> torch.FloatTensor:
    
        if inputs_embeds is None:
            (
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                inputs_embeds,
                clip_embeds,
                qs_embeds,
                qs_mask,
                labels
            ) = self.prepare_inputs_labels_for_multimodal(
                input_ids,
                position_ids,
                attention_mask,
                qs_ids,
                qs_mask,
                past_key_values,
                labels,
                images,
                projector
            )
        if isinstance(labels, tuple):
            labels, indicators = labels
        else:
            indicators = None

        loss, similarity, global_memory, clip_memory = super().forward_grounding_hm(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            clip_embeds=torch.stack(clip_embeds, dim=0),
            qs_embeds=qs_embeds,
            qs_mask=qs_mask,
            labels=labels,
            time_labels=time_labels,
            indicators=indicators,
            return_simi=return_simi,
            select_layer=100,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict
        )
        return similarity, global_memory, clip_memory

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        qs_ids: Optional[torch.LongTensor] = None,
        qs_mask: Optional[torch.Tensor] = None,
        time_labels: Optional[torch.FloatTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        projector: Optional[torch.LongTensor] = None,
        select_layer: Optional[int] = None,
        return_dict: Optional[bool] = None,
    ) -> torch.FloatTensor:
    
        if inputs_embeds is None:
            (
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                inputs_embeds,
                clip_embeds,
                qs_embeds,
                qs_mask,
                labels
            ) = self.prepare_inputs_labels_for_multimodal(
                input_ids,
                position_ids,
                attention_mask,
                qs_ids,
                qs_mask,
                past_key_values,
                labels,
                images,
                projector
            )
        if isinstance(labels, tuple):
            labels, indicators = labels
        else:
            indicators = None

        loss, similarity = super().forward_grounding_hm(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            clip_embeds=torch.stack(clip_embeds, dim=0),
            qs_embeds=qs_embeds,
            qs_mask=qs_mask,
            labels=labels,
            time_labels=time_labels,
            indicators=indicators,
            select_layer=100,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict
        )
        return CausalLMOutputWithPast(loss=loss, past_key_values=past_key_values)

    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, indicators=None, **kwargs):
        images = kwargs.pop("images", None)
        _inputs = super().prepare_inputs_for_generation(
            input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, indicators=indicators, **kwargs
        )
        if images is not None:
            _inputs['images'] = images
        return _inputs

AutoConfig.register("ground_qwen", GroundQwenConfig)
AutoModelForCausalLM.register(GroundQwenConfig, GroundQwenForCausalLM)