---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
base_model: deepvk/RuModernBERT-base
datasets:
- insuperabile/solyanka-triplets
pipeline_tag: sentence-similarity
library_name: sentence-transformers
model-index:
- name: SentenceTransformer based on deepvk/RuModernBERT-base
results:
- task:
type: triplet
name: Triplet
dataset:
name: triplet eval
type: triplet_eval
metrics:
- type: cosine_accuracy
value: 0.9990800023078918
name: Cosine Accuracy
language:
- ru
- en
---
# SentenceTransformer based on deepvk/RuModernBERT-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [deepvk/RuModernBERT-base](https://huggingface.co/deepvk/RuModernBERT-base) on the [solyanka-triplets](https://huggingface.co/datasets/insuperabile/solyanka-triplets) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [deepvk/RuModernBERT-base](https://huggingface.co/deepvk/RuModernBERT-base)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Training Dataset:**
- [solyanka-triplets](https://huggingface.co/datasets/insuperabile/solyanka-triplets)
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("insuperabile/rumodernbert-solyanka")
# Run inference
sentences = [
'Проверьте пожалуйста текст на расставление запятых и раскрытие скобок, тире:) Материал музыки – это звуки. Материал, из которого писатель слагает произведения, - слово. Материал, которым пользуется художник, - это краски. \n Как и звуки краски могут быть и радостными, и печальными. Художник выдавливает их из тюбиков на палитру, и она вспыхивает всеми цветами радуги. Тут и лазурные тона весенней листвы, и нежно – розовый тон заката и глубокие краски вечерних сумерек, краски огненные, как само солнце, и спокойные иссиня - чёрные, как ночное море. \n Но художник не бросает краски на холст беспорядочными пятнами. Постепенно из десятков мазков на холсте вырисовывается лицо, появляются предметы обстановки… Мы смотрим на картину что придаёт перед нашим взором и не видим ни холста, ни красок. Мы видим живую сцену или пейзаж. Нас волнует настроение, которое вложил в свою работу художник. Мы с удовольствием рассматриваем полотно, где разворачиваются события и переживаем их. В этом искусство живописца сродни работы писателя. \n В одном только живопись не похожа ни на музыку, ни на книгу. Мелодия течет и изменяется непрерывно события, за которыми мы следим, читая книгу, следует одно за другим. А картина изображает только одно мгновение. Как будто долго и настойчиво выбирал художник самый замечательный момент жизни, который достоин увековечения. И художник словно приказал времени «Остановить мгновение!» И красками на холсте запечатлел всё, что увидел в этом неповторимом мгновении.\n',
'Материал музыки – это звуки. Материал, из которого писатель слагает произведения, - слово. Материал, которым пользуется художник - это краски. \nКак и звуки, краски могут быть и радостными, и печальными. Художник выдавливает их из тюбиков на палитру, и она вспыхивает всеми цветами радуги. Тут и лазурные тона весенней листвы, и нежно – розовый тон заката, и глубокие краски вечерних сумерек (краски огненные, как само солнце) , и спокойные иссиня - чёрные, как ночное море. \nНо художник не бросает краски на холст беспорядочными пятнами. Постепенно из десятков мазков на холсте вырисовывается лицо, появляются предметы обстановки… Мы смотрим на картину, что предстает перед нашим взором и не видим ни холста, ни красок. Мы видим живую сцену или пейзаж. Нас волнует настроение, которое вложил в свою работу художник. Мы с удовольствием рассматриваем полотно, где разворачиваются события и переживаем их. В этом искусство живописца сродни работы писателя. \nВ одном только живопись не похожа ни на музыку, ни на книгу. Мелодия течет и изменяется непрерывно, события, за которыми мы следим читая книгу, следуют одно за другим. А картина изображает только одно мгновение. Как будто долго и настойчиво выбирал художник самый замечательный момент жизни, который достоин увековечения. И художник словно приказал времени «Остановить мгновение! » И красками, на холсте запечатлел всё, что увидел в этом неповторимом мгновении. \n \n...на картину, что ПРИДАЕТ? (может ПРЕДСТАЕТ? ) перед нашим взором ...\n...события, за которыми мы следим читая книгу, СЛЕДУЕТ (нужно писать СЛЕДУЮТ) одно за другим... ',
'Фильтр салона находится в моторном отсеке. Надо вскрыть заднюю полость моторного отсека у правой стороны лобового стекла. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
-->
## Encodechka
| Model | Model Parameters | STS | PI | NLI | SA | TI | IC | ICX | NEI1 | NEI2 | AVG |
|---------------------------------------|------------------|------|------|------|------|------|------|------|------|------|------|
| insuperabile/rumodernbert-solyanka | 149M | 0.8 | 0.56 | 0.4 | 0.76 | 0.98 | 0.73 | 0.67 | 0.33 | 0.36 | 0.62 |
| insuperabile/SimBERT_RU | 149M | 0.79 | 0.73 | 0.51 | 0.80 | 0.98 | 0.78 | 0.74 | 0.28 | 0.37 | 0.66 |
| insuperabile/rumodernbert-solyanka-QP | 149M | 0.81 | 0.65 | 0.4 | 0.81 | 0.98 | 0.79 | 0.74 | 0.35 | 0.41 | 0.66 |
| deepvk/USER-base | 124M | 0.85 | 0.74 | 0.48 | 0.81 | 0.99 | 0.8 | 0.7 | 0.29 | 0.41 | 0.68 |
| paraphrase-multilingual-MiniLM-L12-v2 | 118M | 0.84 | 0.62 | 0.5 | 0.76 | 0.92 | 0.77 | 0.72 | - | - | - |
| intfloat/multilingual-e5-small | 118M | 0.82 | 0.71 | 0.46 | 0.76 | 0.96 | 0.78 | 0.69 | 0.23 | 0.27 | 0.63 |
## RuMTEB
| model | avg | CEDRClass | GeoreviewClassification | GeoreviewClustering | HeadlineClassif | InappClassif | Kinopoisk | RiaRetrieval | RuBQReranking | RubqRetrieval | RuReviewsClass | RuSTSBench | RSBGClassif | RSBGCluster | RSBOClassif | RSBOCluster | SensitiveClassif | TERRa |
|:--------------------------------------|--------:|------------:|--------------------------:|----------------------:|------------------:|---------------:|------------:|---------------:|----------------:|----------------:|-----------------:|-------------:|--------------:|--------------:|--------------:|--------------:|-------------------:|--------:|
| rumodernbert-solyanka | 53.2006 | 38.34 | 33.79 | 66.68 | 79.36 | 60.71 | 44.78 | 50.67 | 63.57 | 53.58 | 51.05 | 80.07 | 52.31 | 51.17 | 41.01 | 45.21 | 41.39 | 50.72 |
| SimBERT_RU | 50.5552 | 45.58 | 42.63 | 51.52 | 55.80 | 58.28 | 53.08 | 68.08 | 61.40 | 53.58 | 42.78 | 79.79 | 46.35 | 44.06 | 35.21 | 38.76 | 22.58 | 59.96 |
| rumodernbert-solyanka-qp | 56.5847 | 39.44 | 37.72 | 71.23 | 73.85 | 59.97 | 50.37 | 73.09 | 68.07 | 62.65 | 56.59 | 81.64 | 56.04 | 53.40 | 44.48 | 46.80 | 32.82 | 53.78 |
| user-base | 57.6429 | 46.78 | 46.88 | 63.41 | 75 | 61.83 | 56.03 | 77.72 | 64.42 | 56.86 | 65.48 | 81.91 | 55.55 | 51.5 | 43.28 | 44.87 | 28.65 | 59.76 |
| paraphrase-multilingual-MiniLM-L12-v2 | 48.8794 | 37.76 | 38.24 | 53.37 | 68.3 | 58.18 | 41.45 | 44.82 | 52.8 | 29.7 | 58.88 | 79.55 | 53.19 | 48.22 | 41.41 | 41.68 | 24.84 | 58.56 |
| multilingual-e5-small | 55.3024 | 40.39 | 42.3 | 61.56 | 73.74 | 58.44 | 47.57 | 70 | 71.46 | 68.53 | 60.64 | 77.72 | 53.59 | 49.34 | 40.35 | 42.62 | 24.38 | 57.51 |
## Training Details
## Hardware
8xH200 5 часов
### Training Dataset
#### solyanka-triplets
* Dataset: [solyanka-triplets](https://huggingface.co/datasets/insuperabile/solyanka-triplets) at [bcb121a](https://huggingface.co/datasets/insuperabile/solyanka-triplets/tree/bcb121a58fa5068196fe9d2652ac56dedc8f7f75)
* Size: 1,900,000 training samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string | string |
| details |