Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,135 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model:
|
4 |
+
- Qwen/Qwen3-32B
|
5 |
+
---
|
6 |
+
|
7 |
+
<style>
|
8 |
+
.no-border-table table, .no-border-table th, .no-border-table td {
|
9 |
+
border: none !important;
|
10 |
+
}
|
11 |
+
</style>
|
12 |
+
|
13 |
+
<div class="no-border-table">
|
14 |
+
|
15 |
+
| | |
|
16 |
+
|-|-|
|
17 |
+
| [](https://github.com/inclusionAI/AWorld/tree/main/train) | [](https://arxiv.org/abs/2508.20404) |
|
18 |
+
|
19 |
+
</div>
|
20 |
+
|
21 |
+
# Qwen3-32B-AWorld
|
22 |
+
|
23 |
+
## Model Description
|
24 |
+
|
25 |
+
**Qwen3-32B-AWorld** is a large language model fine-tuned from `Qwen3-32B`, specializing in agent capabilities and proficient tool usage. The model excels at complex agent-based tasks through precise integration with external tools, achieving a pass@1 score on the GAIA benchmark that surpasses GPT-4o and is comparable to DeepSeek-V3.
|
26 |
+
|
27 |
+
<img src="" style="width:100%;">
|
28 |
+
|
29 |
+
## Quick Start
|
30 |
+
|
31 |
+
This guide provides instructions for quickly deploying and running inference with `Qwen3-32B-AWorld` using vLLM.
|
32 |
+
|
33 |
+
### Deployment with vLLM
|
34 |
+
|
35 |
+
To deploy the model, use the following `vllm serve` command:
|
36 |
+
|
37 |
+
```bash
|
38 |
+
vllm serve inclusionAI/Qwen3-32B-AWorld \
|
39 |
+
--rope-scaling '{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' \
|
40 |
+
--max-model-len 131072 \
|
41 |
+
--gpu-memory-utilization 0.85 \
|
42 |
+
--dtype bfloat16 \
|
43 |
+
--tensor-parallel-size 8 \
|
44 |
+
--enable-auto-tool-choice \
|
45 |
+
--tool-call-parser hermes
|
46 |
+
```
|
47 |
+
|
48 |
+
**Key Configuration:**
|
49 |
+
|
50 |
+
* **Deployment Recommendation:** We recommend deploying the model on **8 GPUs** to enhance concurrency. The `tensor-parallel-size` argument should be set to the number of GPUs you are using (e.g., `8` in the command above).
|
51 |
+
* **Tool Usage Flags:** To enable the model's tool-calling capabilities, it is crucial to include the `--enable-auto-tool-choice` and `--tool-call-parser hermes` flags. These ensure that the model can correctly process tool calls and parse the results.
|
52 |
+
|
53 |
+
### Making Inference Calls
|
54 |
+
|
55 |
+
When making an inference request, you must include the `tools` you want the model to use. The format should follow the official OpenAI API specification.
|
56 |
+
|
57 |
+
Here is a complete Python example for making an API call to the deployed model using the requests library. This example demonstrates how to query the model with a specific tool.
|
58 |
+
|
59 |
+
```python
|
60 |
+
import requests
|
61 |
+
import json
|
62 |
+
|
63 |
+
# Define the tools available for the model to use
|
64 |
+
tools = [
|
65 |
+
{
|
66 |
+
"type": "function",
|
67 |
+
"function": {
|
68 |
+
"name": "mcp__google-search__search",
|
69 |
+
"description": "Perform a web search query",
|
70 |
+
"parameters": {
|
71 |
+
"type": "object",
|
72 |
+
"properties": {
|
73 |
+
"query": {
|
74 |
+
"description": "Search query",
|
75 |
+
"type": "string"
|
76 |
+
},
|
77 |
+
"num": {
|
78 |
+
"description": "Number of results (1-10)",
|
79 |
+
"type": "number"
|
80 |
+
}
|
81 |
+
},
|
82 |
+
"required": [
|
83 |
+
"query"
|
84 |
+
]
|
85 |
+
}
|
86 |
+
}
|
87 |
+
}
|
88 |
+
]
|
89 |
+
|
90 |
+
# Define the user's prompt
|
91 |
+
messages = [
|
92 |
+
{
|
93 |
+
"role": "user",
|
94 |
+
"content": "Search for hangzhou's weather today."
|
95 |
+
}
|
96 |
+
]
|
97 |
+
|
98 |
+
# Set generation parameters
|
99 |
+
temperature = 0.6
|
100 |
+
top_p = 0.95
|
101 |
+
top_k = 20
|
102 |
+
min_p = 0
|
103 |
+
|
104 |
+
# Prepare the request payload
|
105 |
+
data = {
|
106 |
+
"messages": messages,
|
107 |
+
"tools": tools,
|
108 |
+
"temperature": temperature,
|
109 |
+
"top_p": top_p,
|
110 |
+
"top_k": top_k,
|
111 |
+
"min_p": min_p,
|
112 |
+
}
|
113 |
+
|
114 |
+
# The endpoint for the vLLM OpenAI-compatible server
|
115 |
+
# Replace {your_ip} and {your_port} with the actual IP address and port of your server.
|
116 |
+
url = "http://{your_ip}:{your_port}/v1/chat/completions"
|
117 |
+
|
118 |
+
# Send the POST request
|
119 |
+
response = requests.post(
|
120 |
+
url,
|
121 |
+
headers={"Content-Type": "application/json"},
|
122 |
+
data=json.dumps(data)
|
123 |
+
)
|
124 |
+
|
125 |
+
# Print the response from the server
|
126 |
+
print("Status Code:", response.status_code)
|
127 |
+
print("Response Body:", response.text)
|
128 |
+
|
129 |
+
```
|
130 |
+
|
131 |
+
**Note:**
|
132 |
+
|
133 |
+
* Remember to replace `{your_ip}` and `{your_port}` in the `url` variable with the actual IP address and port where your vLLM server is running. The default port is typically `8000`.
|
134 |
+
|
135 |
+
|