Update handler.py
Browse files- handler.py +7 -52
handler.py
CHANGED
@@ -96,60 +96,15 @@ class NelPipeline:
|
|
96 |
device=self.device)
|
97 |
|
98 |
def preprocess(self, text: str):
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
start_idx = text.index(start_token) + len(start_token)
|
104 |
-
end_idx = text.index(end_token)
|
105 |
-
enclosed_entity = text[start_idx:end_idx].strip()
|
106 |
-
lOffset = start_idx
|
107 |
-
rOffset = end_idx
|
108 |
-
else:
|
109 |
-
enclosed_entity = None
|
110 |
-
lOffset = None
|
111 |
-
rOffset = None
|
112 |
-
|
113 |
-
outputs = self.model.generate(
|
114 |
-
**self.tokenizer([text], return_tensors="pt").to(self.device),
|
115 |
-
num_beams=1,
|
116 |
-
num_return_sequences=1,
|
117 |
-
max_new_tokens=30,
|
118 |
-
return_dict_in_generate=True,
|
119 |
-
output_scores=True,
|
120 |
-
)
|
121 |
-
wikipedia_prediction = self.tokenizer.batch_decode(
|
122 |
-
outputs.sequences, skip_special_tokens=True
|
123 |
-
)[0]
|
124 |
-
|
125 |
-
transition_scores = self.model.compute_transition_scores(
|
126 |
-
outputs.sequences, outputs.scores, normalize_logits=True
|
127 |
-
)
|
128 |
-
log_prob_sum = sum(transition_scores[0])
|
129 |
-
sequence_confidence = torch.exp(log_prob_sum)
|
130 |
-
percentage = sequence_confidence.cpu().numpy() * 100.0
|
131 |
-
|
132 |
-
return wikipedia_prediction, enclosed_entity, lOffset, rOffset, percentage
|
133 |
|
134 |
def postprocess(self, outputs):
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
title, url = get_wikipedia_title(qid, language=language)
|
139 |
-
|
140 |
-
results = [
|
141 |
-
{
|
142 |
-
"surface": enclosed_entity,
|
143 |
-
"wkd_id": qid,
|
144 |
-
"wkpedia_pagename": title,
|
145 |
-
"wkpedia_url": url,
|
146 |
-
"type": "UNK",
|
147 |
-
"confidence_nel": round(percentage, 2),
|
148 |
-
"lOffset": lOffset,
|
149 |
-
"rOffset": rOffset,
|
150 |
-
}
|
151 |
-
]
|
152 |
-
return results
|
153 |
|
154 |
|
155 |
class EndpointHandler:
|
|
|
96 |
device=self.device)
|
97 |
|
98 |
def preprocess(self, text: str):
|
99 |
+
|
100 |
+
linked_entity = nel_pipeline(text)
|
101 |
+
|
102 |
+
return linked_entity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
def postprocess(self, outputs):
|
105 |
+
linked_entity = outputs
|
106 |
+
|
107 |
+
return linked_entity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
|
110 |
class EndpointHandler:
|