Andrianos commited on
Commit
0644938
·
1 Parent(s): 4489e16

initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,489 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:40000
8
+ - loss:MSELoss
9
+ base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
10
+ widget:
11
+ - source_sentence: Who is filming along?
12
+ sentences:
13
+ - Wién filmt mat?
14
+ - Weider huet den Tatarescu drop higewisen, datt Rumänien durch seng krichsbedélegong
15
+ op de 6eite vun den allie'erten 110.000 mann verluer hätt.
16
+ - Brambilla 130.08.03 St.
17
+ - source_sentence: 'Four potential scenarios could still play out: Jean Asselborn.'
18
+ sentences:
19
+ - Dann ass nach eng Antenne hei um Kierchbierg virgesi Richtung RTL Gebai, do gëtt
20
+ jo een ganz neie Wunnquartier gebaut.
21
+ - D'bedélegong un de wählen wir ganz stärk gewiéscht a munche ge'genden wor re eso'gucr
22
+ me' we' 90 prozent.
23
+ - Jean Asselborn gesäit 4 Méiglechkeeten, wéi et kéint virugoen.
24
+ - source_sentence: Non-profit organisation Passerell, which provides legal council
25
+ to refugees in Luxembourg, announced that it has to make four employees redundant
26
+ in August due to a lack of funding.
27
+ sentences:
28
+ - Oetringen nach Remich....8.20» 215»
29
+ - D'ASBL Passerell, déi sech ëm d'Berodung vu Refugiéeën a Saache Rechtsfroe këmmert,
30
+ wäert am August mussen hir véier fix Salariéen entloossen.
31
+ - D'Regierung huet allerdéngs "just" 180.041 Doudeger verzeechent.
32
+ - source_sentence: This regulation was temporarily lifted during the Covid pandemic.
33
+ sentences:
34
+ - Six Jours vu New-York si fir d’équipe Girgetti — Debacco
35
+ - Dës Reegelung gouf wärend der Covid-Pandemie ausgesat.
36
+ - ING-Marathon ouni gréisser Tëschefäll ofgelaf - 18 Leit hospitaliséiert.
37
+ - source_sentence: The cross-border workers should also receive more wages.
38
+ sentences:
39
+ - D'grenzarbechetr missten och me' lo'n kre'en.
40
+ - 'De Néckel: Firun! Dât ass jo ailes, wèll ''t get dach neischt un der Bréck gemâcht!'
41
+ - D'Grande-Duchesse Josephine Charlotte an hir Ministeren hunn d'Land verlooss,
42
+ et war den Optakt vun der Zäit am Exil.
43
+ pipeline_tag: sentence-similarity
44
+ library_name: sentence-transformers
45
+ metrics:
46
+ - negative_mse
47
+ - src2trg_accuracy
48
+ - trg2src_accuracy
49
+ - mean_accuracy
50
+ model-index:
51
+ - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
52
+ results:
53
+ - task:
54
+ type: knowledge-distillation
55
+ name: Knowledge Distillation
56
+ dataset:
57
+ name: lb en
58
+ type: lb-en
59
+ metrics:
60
+ - type: negative_mse
61
+ value: -0.47610557079315186
62
+ name: Negative Mse
63
+ - task:
64
+ type: translation
65
+ name: Translation
66
+ dataset:
67
+ name: lb en
68
+ type: lb-en
69
+ metrics:
70
+ - type: src2trg_accuracy
71
+ value: 0.9861111111111112
72
+ name: Src2Trg Accuracy
73
+ - type: trg2src_accuracy
74
+ value: 0.9861111111111112
75
+ name: Trg2Src Accuracy
76
+ - type: mean_accuracy
77
+ value: 0.9861111111111112
78
+ name: Mean Accuracy
79
+ ---
80
+
81
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
82
+
83
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the lb-en dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
84
+
85
+ ## Model Details
86
+
87
+ ### Model Description
88
+ - **Model Type:** Sentence Transformer
89
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 75c57757a97f90ad739aca51fa8bfea0e485a7f2 -->
90
+ - **Maximum Sequence Length:** 128 tokens
91
+ - **Output Dimensionality:** 768 dimensions
92
+ - **Similarity Function:** Cosine Similarity
93
+ - **Training Dataset:**
94
+ - lb-en
95
+ <!-- - **Language:** Unknown -->
96
+ <!-- - **License:** Unknown -->
97
+
98
+ ### Model Sources
99
+
100
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
101
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
102
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
103
+
104
+ ### Full Model Architecture
105
+
106
+ ```
107
+ SentenceTransformer(
108
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
109
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
110
+ )
111
+ ```
112
+
113
+ ## Usage
114
+
115
+ ### Direct Usage (Sentence Transformers)
116
+
117
+ First install the Sentence Transformers library:
118
+
119
+ ```bash
120
+ pip install -U sentence-transformers
121
+ ```
122
+
123
+ Then you can load this model and run inference.
124
+ ```python
125
+ from sentence_transformers import SentenceTransformer
126
+
127
+ # Download from the 🤗 Hub
128
+ model = SentenceTransformer("aloizidis/make-multilingual-en-lb-2025-02-28_01-09-55")
129
+ # Run inference
130
+ sentences = [
131
+ 'The cross-border workers should also receive more wages.',
132
+ "D'grenzarbechetr missten och me' lo'n kre'en.",
133
+ "De Néckel: Firun! Dât ass jo ailes, wèll 't get dach neischt un der Bréck gemâcht!",
134
+ ]
135
+ embeddings = model.encode(sentences)
136
+ print(embeddings.shape)
137
+ # [3, 768]
138
+
139
+ # Get the similarity scores for the embeddings
140
+ similarities = model.similarity(embeddings, embeddings)
141
+ print(similarities.shape)
142
+ # [3, 3]
143
+ ```
144
+
145
+ <!--
146
+ ### Direct Usage (Transformers)
147
+
148
+ <details><summary>Click to see the direct usage in Transformers</summary>
149
+
150
+ </details>
151
+ -->
152
+
153
+ <!--
154
+ ### Downstream Usage (Sentence Transformers)
155
+
156
+ You can finetune this model on your own dataset.
157
+
158
+ <details><summary>Click to expand</summary>
159
+
160
+ </details>
161
+ -->
162
+
163
+ <!--
164
+ ### Out-of-Scope Use
165
+
166
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
167
+ -->
168
+
169
+ ## Evaluation
170
+
171
+ ### Metrics
172
+
173
+ #### Knowledge Distillation
174
+
175
+ * Dataset: `lb-en`
176
+ * Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
177
+
178
+ | Metric | Value |
179
+ |:-----------------|:------------|
180
+ | **negative_mse** | **-0.4761** |
181
+
182
+ #### Translation
183
+
184
+ * Dataset: `lb-en`
185
+ * Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
186
+
187
+ | Metric | Value |
188
+ |:------------------|:-----------|
189
+ | src2trg_accuracy | 0.9861 |
190
+ | trg2src_accuracy | 0.9861 |
191
+ | **mean_accuracy** | **0.9861** |
192
+
193
+ <!--
194
+ ## Bias, Risks and Limitations
195
+
196
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
197
+ -->
198
+
199
+ <!--
200
+ ### Recommendations
201
+
202
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
203
+ -->
204
+
205
+ ## Training Details
206
+
207
+ ### Training Dataset
208
+
209
+ #### lb-en
210
+
211
+ * Dataset: lb-en
212
+ * Size: 40,000 training samples
213
+ * Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
214
+ * Approximate statistics based on the first 1000 samples:
215
+ | | english | non_english | label |
216
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
217
+ | type | string | string | list |
218
+ | details | <ul><li>min: 4 tokens</li><li>mean: 25.32 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 36.91 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
219
+ * Samples:
220
+ | english | non_english | label |
221
+ |:---------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------|
222
+ | <code>A lesson for the next year</code> | <code>Eng le’er fir dat anert joer</code> | <code>[0.08891881257295609, 0.20895496010780334, -0.10672671347856522, -0.03302554786205292, 0.049002278596162796, ...]</code> |
223
+ | <code>On Easter, the Maquisards' northern section organizes their big spring ball in Willy Pintsch's hall at the station.</code> | <code>Op O'schteren organisieren d'Maquisard'eiii section Nord, hire gro'sse fre'joersbal am sali Willy Pintsch op der gare.</code> | <code>[-0.08668982982635498, -0.06969941407442093, -0.0036096556577831507, 0.1605304628610611, -0.041704729199409485, ...]</code> |
224
+ | <code>The happiness, the peace is long gone now,</code> | <code>V ergângen ass nu läng dat gléck, de' fréd,</code> | <code>[0.07229219377040863, 0.3288629353046417, -0.012548360042273998, 0.06720984727144241, -0.02617395855486393, ...]</code> |
225
+ * Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
226
+
227
+ ### Evaluation Dataset
228
+
229
+ #### lb-en
230
+
231
+ * Dataset: lb-en
232
+ * Size: 504 evaluation samples
233
+ * Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
234
+ * Approximate statistics based on the first 504 samples:
235
+ | | english | non_english | label |
236
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
237
+ | type | string | string | list |
238
+ | details | <ul><li>min: 5 tokens</li><li>mean: 25.23 tokens</li><li>max: 85 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 36.48 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
239
+ * Samples:
240
+ | english | non_english | label |
241
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------|
242
+ | <code>But he was not the instigator of the mass murders of the Jews, his lawyer explained, and he bore no more responsibility than the others.</code> | <code>Mé hié wir net den ustêfter vun de massemuerden un de judden, erklärt sein affekot, an hicn hätt net me' verantwortong ze droen we' de' aner.</code> | <code>[0.021159790456295013, 0.11144042760133743, 0.00869293138384819, 0.004551620222628117, -0.09236127883195877, ...]</code> |
243
+ | <code>The Romanian automotive industry * For the first time in its history, Romania has started car production.</code> | <code>D’rumänesch autoindustrie * Fir d'c'schte ke'er an senger geschieht huet Rumänien d'fabrikalio'n vun'den autoen opgeholl.</code> | <code>[-0.16835248470306396, 0.14826826751232147, 0.01772368885576725, -0.027855699881911278, 0.04770198464393616, ...]</code> |
244
+ | <code>The drugs were confiscated along with the dealer's car, mobile phones and cash.</code> | <code>D'Drogen, den Auto, d'Boergeld an d'Handye si saiséiert ginn.</code> | <code>[-0.05122023820877075, 0.01204440463334322, -0.025424882769584656, 0.1286350041627884, 0.034633491188287735, ...]</code> |
245
+ * Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
246
+
247
+ ### Training Hyperparameters
248
+ #### Non-Default Hyperparameters
249
+
250
+ - `eval_strategy`: steps
251
+ - `per_device_train_batch_size`: 32
252
+ - `per_device_eval_batch_size`: 32
253
+ - `learning_rate`: 2e-05
254
+ - `num_train_epochs`: 5
255
+ - `warmup_ratio`: 0.1
256
+ - `bf16`: True
257
+
258
+ #### All Hyperparameters
259
+ <details><summary>Click to expand</summary>
260
+
261
+ - `overwrite_output_dir`: False
262
+ - `do_predict`: False
263
+ - `eval_strategy`: steps
264
+ - `prediction_loss_only`: True
265
+ - `per_device_train_batch_size`: 32
266
+ - `per_device_eval_batch_size`: 32
267
+ - `per_gpu_train_batch_size`: None
268
+ - `per_gpu_eval_batch_size`: None
269
+ - `gradient_accumulation_steps`: 1
270
+ - `eval_accumulation_steps`: None
271
+ - `torch_empty_cache_steps`: None
272
+ - `learning_rate`: 2e-05
273
+ - `weight_decay`: 0.0
274
+ - `adam_beta1`: 0.9
275
+ - `adam_beta2`: 0.999
276
+ - `adam_epsilon`: 1e-08
277
+ - `max_grad_norm`: 1.0
278
+ - `num_train_epochs`: 5
279
+ - `max_steps`: -1
280
+ - `lr_scheduler_type`: linear
281
+ - `lr_scheduler_kwargs`: {}
282
+ - `warmup_ratio`: 0.1
283
+ - `warmup_steps`: 0
284
+ - `log_level`: passive
285
+ - `log_level_replica`: warning
286
+ - `log_on_each_node`: True
287
+ - `logging_nan_inf_filter`: True
288
+ - `save_safetensors`: True
289
+ - `save_on_each_node`: False
290
+ - `save_only_model`: False
291
+ - `restore_callback_states_from_checkpoint`: False
292
+ - `no_cuda`: False
293
+ - `use_cpu`: False
294
+ - `use_mps_device`: False
295
+ - `seed`: 42
296
+ - `data_seed`: None
297
+ - `jit_mode_eval`: False
298
+ - `use_ipex`: False
299
+ - `bf16`: True
300
+ - `fp16`: False
301
+ - `fp16_opt_level`: O1
302
+ - `half_precision_backend`: auto
303
+ - `bf16_full_eval`: False
304
+ - `fp16_full_eval`: False
305
+ - `tf32`: None
306
+ - `local_rank`: 0
307
+ - `ddp_backend`: None
308
+ - `tpu_num_cores`: None
309
+ - `tpu_metrics_debug`: False
310
+ - `debug`: []
311
+ - `dataloader_drop_last`: False
312
+ - `dataloader_num_workers`: 0
313
+ - `dataloader_prefetch_factor`: None
314
+ - `past_index`: -1
315
+ - `disable_tqdm`: False
316
+ - `remove_unused_columns`: True
317
+ - `label_names`: None
318
+ - `load_best_model_at_end`: False
319
+ - `ignore_data_skip`: False
320
+ - `fsdp`: []
321
+ - `fsdp_min_num_params`: 0
322
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
323
+ - `fsdp_transformer_layer_cls_to_wrap`: None
324
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
325
+ - `deepspeed`: None
326
+ - `label_smoothing_factor`: 0.0
327
+ - `optim`: adamw_torch
328
+ - `optim_args`: None
329
+ - `adafactor`: False
330
+ - `group_by_length`: False
331
+ - `length_column_name`: length
332
+ - `ddp_find_unused_parameters`: None
333
+ - `ddp_bucket_cap_mb`: None
334
+ - `ddp_broadcast_buffers`: False
335
+ - `dataloader_pin_memory`: True
336
+ - `dataloader_persistent_workers`: False
337
+ - `skip_memory_metrics`: True
338
+ - `use_legacy_prediction_loop`: False
339
+ - `push_to_hub`: False
340
+ - `resume_from_checkpoint`: None
341
+ - `hub_model_id`: None
342
+ - `hub_strategy`: every_save
343
+ - `hub_private_repo`: None
344
+ - `hub_always_push`: False
345
+ - `gradient_checkpointing`: False
346
+ - `gradient_checkpointing_kwargs`: None
347
+ - `include_inputs_for_metrics`: False
348
+ - `include_for_metrics`: []
349
+ - `eval_do_concat_batches`: True
350
+ - `fp16_backend`: auto
351
+ - `push_to_hub_model_id`: None
352
+ - `push_to_hub_organization`: None
353
+ - `mp_parameters`:
354
+ - `auto_find_batch_size`: False
355
+ - `full_determinism`: False
356
+ - `torchdynamo`: None
357
+ - `ray_scope`: last
358
+ - `ddp_timeout`: 1800
359
+ - `torch_compile`: False
360
+ - `torch_compile_backend`: None
361
+ - `torch_compile_mode`: None
362
+ - `dispatch_batches`: None
363
+ - `split_batches`: None
364
+ - `include_tokens_per_second`: False
365
+ - `include_num_input_tokens_seen`: False
366
+ - `neftune_noise_alpha`: None
367
+ - `optim_target_modules`: None
368
+ - `batch_eval_metrics`: False
369
+ - `eval_on_start`: False
370
+ - `use_liger_kernel`: False
371
+ - `eval_use_gather_object`: False
372
+ - `average_tokens_across_devices`: False
373
+ - `prompts`: None
374
+ - `batch_sampler`: batch_sampler
375
+ - `multi_dataset_batch_sampler`: proportional
376
+
377
+ </details>
378
+
379
+ ### Training Logs
380
+ | Epoch | Step | Training Loss | lb-en loss | lb-en_negative_mse | lb-en_mean_accuracy |
381
+ |:------:|:----:|:-------------:|:----------:|:------------------:|:-------------------:|
382
+ | 0.08 | 100 | 0.0056 | 0.0048 | -0.7796 | 0.7887 |
383
+ | 0.16 | 200 | 0.0051 | 0.0046 | -0.7330 | 0.8373 |
384
+ | 0.24 | 300 | 0.0049 | 0.0044 | -0.6992 | 0.8740 |
385
+ | 0.32 | 400 | 0.0047 | 0.0043 | -0.6763 | 0.8889 |
386
+ | 0.4 | 500 | 0.0046 | 0.0042 | -0.6584 | 0.8988 |
387
+ | 0.48 | 600 | 0.0045 | 0.0041 | -0.6377 | 0.9067 |
388
+ | 0.56 | 700 | 0.0044 | 0.0040 | -0.6209 | 0.9206 |
389
+ | 0.64 | 800 | 0.0043 | 0.0040 | -0.6087 | 0.9266 |
390
+ | 0.72 | 900 | 0.0043 | 0.0039 | -0.5984 | 0.9395 |
391
+ | 0.8 | 1000 | 0.0042 | 0.0038 | -0.5887 | 0.9385 |
392
+ | 0.88 | 1100 | 0.0042 | 0.0038 | -0.5799 | 0.9425 |
393
+ | 0.96 | 1200 | 0.0041 | 0.0038 | -0.5725 | 0.9474 |
394
+ | 1.04 | 1300 | 0.004 | 0.0037 | -0.5690 | 0.9524 |
395
+ | 1.12 | 1400 | 0.0039 | 0.0037 | -0.5602 | 0.9554 |
396
+ | 1.2 | 1500 | 0.0038 | 0.0037 | -0.5545 | 0.9603 |
397
+ | 1.28 | 1600 | 0.0038 | 0.0036 | -0.5501 | 0.9673 |
398
+ | 1.3600 | 1700 | 0.0038 | 0.0036 | -0.5459 | 0.9643 |
399
+ | 1.44 | 1800 | 0.0037 | 0.0036 | -0.5411 | 0.9702 |
400
+ | 1.52 | 1900 | 0.0038 | 0.0036 | -0.5360 | 0.9722 |
401
+ | 1.6 | 2000 | 0.0037 | 0.0035 | -0.5326 | 0.9683 |
402
+ | 1.6800 | 2100 | 0.0037 | 0.0035 | -0.5310 | 0.9732 |
403
+ | 1.76 | 2200 | 0.0036 | 0.0035 | -0.5264 | 0.9752 |
404
+ | 1.8400 | 2300 | 0.0037 | 0.0035 | -0.5224 | 0.9792 |
405
+ | 1.92 | 2400 | 0.0036 | 0.0035 | -0.5205 | 0.9792 |
406
+ | 2.0 | 2500 | 0.0036 | 0.0034 | -0.5166 | 0.9782 |
407
+ | 2.08 | 2600 | 0.0033 | 0.0034 | -0.5137 | 0.9782 |
408
+ | 2.16 | 2700 | 0.0034 | 0.0034 | -0.5121 | 0.9812 |
409
+ | 2.24 | 2800 | 0.0033 | 0.0034 | -0.5093 | 0.9802 |
410
+ | 2.32 | 2900 | 0.0034 | 0.0034 | -0.5063 | 0.9821 |
411
+ | 2.4 | 3000 | 0.0034 | 0.0034 | -0.5051 | 0.9802 |
412
+ | 2.48 | 3100 | 0.0034 | 0.0034 | -0.5030 | 0.9812 |
413
+ | 2.56 | 3200 | 0.0033 | 0.0033 | -0.5002 | 0.9851 |
414
+ | 2.64 | 3300 | 0.0034 | 0.0033 | -0.4962 | 0.9831 |
415
+ | 2.7200 | 3400 | 0.0034 | 0.0033 | -0.4936 | 0.9831 |
416
+ | 2.8 | 3500 | 0.0033 | 0.0033 | -0.4916 | 0.9841 |
417
+ | 2.88 | 3600 | 0.0033 | 0.0033 | -0.4892 | 0.9841 |
418
+ | 2.96 | 3700 | 0.0033 | 0.0033 | -0.4871 | 0.9841 |
419
+ | 3.04 | 3800 | 0.0032 | 0.0033 | -0.4863 | 0.9861 |
420
+ | 3.12 | 3900 | 0.0031 | 0.0033 | -0.4864 | 0.9841 |
421
+ | 3.2 | 4000 | 0.0031 | 0.0033 | -0.4859 | 0.9841 |
422
+ | 3.2800 | 4100 | 0.0031 | 0.0033 | -0.4848 | 0.9871 |
423
+ | 3.36 | 4200 | 0.0031 | 0.0033 | -0.4838 | 0.9881 |
424
+ | 3.44 | 4300 | 0.0031 | 0.0032 | -0.4837 | 0.9861 |
425
+ | 3.52 | 4400 | 0.0031 | 0.0032 | -0.4817 | 0.9851 |
426
+ | 3.6 | 4500 | 0.0031 | 0.0032 | -0.4812 | 0.9841 |
427
+ | 3.68 | 4600 | 0.0031 | 0.0032 | -0.4792 | 0.9861 |
428
+ | 3.76 | 4700 | 0.0031 | 0.0032 | -0.4793 | 0.9851 |
429
+ | 3.84 | 4800 | 0.0031 | 0.0032 | -0.4779 | 0.9871 |
430
+ | 3.92 | 4900 | 0.0031 | 0.0032 | -0.4771 | 0.9861 |
431
+ | 4.0 | 5000 | 0.0031 | 0.0032 | -0.4761 | 0.9861 |
432
+
433
+
434
+ ### Framework Versions
435
+ - Python: 3.11.11
436
+ - Sentence Transformers: 3.4.1
437
+ - Transformers: 4.49.0
438
+ - PyTorch: 2.6.0
439
+ - Accelerate: 1.4.0
440
+ - Datasets: 3.3.2
441
+ - Tokenizers: 0.21.0
442
+
443
+ ## Citation
444
+
445
+ ### BibTeX
446
+
447
+ #### Sentence Transformers
448
+ ```bibtex
449
+ @inproceedings{reimers-2019-sentence-bert,
450
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
451
+ author = "Reimers, Nils and Gurevych, Iryna",
452
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
453
+ month = "11",
454
+ year = "2019",
455
+ publisher = "Association for Computational Linguistics",
456
+ url = "https://arxiv.org/abs/1908.10084",
457
+ }
458
+ ```
459
+
460
+ #### MSELoss
461
+ ```bibtex
462
+ @inproceedings{reimers-2020-multilingual-sentence-bert,
463
+ title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
464
+ author = "Reimers, Nils and Gurevych, Iryna",
465
+ booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
466
+ month = "11",
467
+ year = "2020",
468
+ publisher = "Association for Computational Linguistics",
469
+ url = "https://arxiv.org/abs/2004.09813",
470
+ }
471
+ ```
472
+
473
+ <!--
474
+ ## Glossary
475
+
476
+ *Clearly define terms in order to be accessible across audiences.*
477
+ -->
478
+
479
+ <!--
480
+ ## Model Card Authors
481
+
482
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
483
+ -->
484
+
485
+ <!--
486
+ ## Model Card Contact
487
+
488
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
489
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./output/make-multilingual-en-lb-2025-02-28_01-09-55/checkpoint-5000",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "xlm-roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "output_past": true,
22
+ "pad_token_id": 1,
23
+ "position_embedding_type": "absolute",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.49.0",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 250002
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.6.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bf99af3ca0f1c7e6456f56622680a9ae9d8ef2e4af5ca362d337d20bcaa9eb4
3
+ size 1112197096
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "max_length": 128,
51
+ "model_max_length": 128,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizerFast",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }