initial commit
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +489 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +62 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,489 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:40000
|
8 |
+
- loss:MSELoss
|
9 |
+
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
10 |
+
widget:
|
11 |
+
- source_sentence: Who is filming along?
|
12 |
+
sentences:
|
13 |
+
- Wién filmt mat?
|
14 |
+
- Weider huet den Tatarescu drop higewisen, datt Rumänien durch seng krichsbedélegong
|
15 |
+
op de 6eite vun den allie'erten 110.000 mann verluer hätt.
|
16 |
+
- Brambilla 130.08.03 St.
|
17 |
+
- source_sentence: 'Four potential scenarios could still play out: Jean Asselborn.'
|
18 |
+
sentences:
|
19 |
+
- Dann ass nach eng Antenne hei um Kierchbierg virgesi Richtung RTL Gebai, do gëtt
|
20 |
+
jo een ganz neie Wunnquartier gebaut.
|
21 |
+
- D'bedélegong un de wählen wir ganz stärk gewiéscht a munche ge'genden wor re eso'gucr
|
22 |
+
me' we' 90 prozent.
|
23 |
+
- Jean Asselborn gesäit 4 Méiglechkeeten, wéi et kéint virugoen.
|
24 |
+
- source_sentence: Non-profit organisation Passerell, which provides legal council
|
25 |
+
to refugees in Luxembourg, announced that it has to make four employees redundant
|
26 |
+
in August due to a lack of funding.
|
27 |
+
sentences:
|
28 |
+
- Oetringen nach Remich....8.20» 215»
|
29 |
+
- D'ASBL Passerell, déi sech ëm d'Berodung vu Refugiéeën a Saache Rechtsfroe këmmert,
|
30 |
+
wäert am August mussen hir véier fix Salariéen entloossen.
|
31 |
+
- D'Regierung huet allerdéngs "just" 180.041 Doudeger verzeechent.
|
32 |
+
- source_sentence: This regulation was temporarily lifted during the Covid pandemic.
|
33 |
+
sentences:
|
34 |
+
- Six Jours vu New-York si fir d’équipe Girgetti — Debacco
|
35 |
+
- Dës Reegelung gouf wärend der Covid-Pandemie ausgesat.
|
36 |
+
- ING-Marathon ouni gréisser Tëschefäll ofgelaf - 18 Leit hospitaliséiert.
|
37 |
+
- source_sentence: The cross-border workers should also receive more wages.
|
38 |
+
sentences:
|
39 |
+
- D'grenzarbechetr missten och me' lo'n kre'en.
|
40 |
+
- 'De Néckel: Firun! Dât ass jo ailes, wèll ''t get dach neischt un der Bréck gemâcht!'
|
41 |
+
- D'Grande-Duchesse Josephine Charlotte an hir Ministeren hunn d'Land verlooss,
|
42 |
+
et war den Optakt vun der Zäit am Exil.
|
43 |
+
pipeline_tag: sentence-similarity
|
44 |
+
library_name: sentence-transformers
|
45 |
+
metrics:
|
46 |
+
- negative_mse
|
47 |
+
- src2trg_accuracy
|
48 |
+
- trg2src_accuracy
|
49 |
+
- mean_accuracy
|
50 |
+
model-index:
|
51 |
+
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
52 |
+
results:
|
53 |
+
- task:
|
54 |
+
type: knowledge-distillation
|
55 |
+
name: Knowledge Distillation
|
56 |
+
dataset:
|
57 |
+
name: lb en
|
58 |
+
type: lb-en
|
59 |
+
metrics:
|
60 |
+
- type: negative_mse
|
61 |
+
value: -0.47610557079315186
|
62 |
+
name: Negative Mse
|
63 |
+
- task:
|
64 |
+
type: translation
|
65 |
+
name: Translation
|
66 |
+
dataset:
|
67 |
+
name: lb en
|
68 |
+
type: lb-en
|
69 |
+
metrics:
|
70 |
+
- type: src2trg_accuracy
|
71 |
+
value: 0.9861111111111112
|
72 |
+
name: Src2Trg Accuracy
|
73 |
+
- type: trg2src_accuracy
|
74 |
+
value: 0.9861111111111112
|
75 |
+
name: Trg2Src Accuracy
|
76 |
+
- type: mean_accuracy
|
77 |
+
value: 0.9861111111111112
|
78 |
+
name: Mean Accuracy
|
79 |
+
---
|
80 |
+
|
81 |
+
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
82 |
+
|
83 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the lb-en dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
84 |
+
|
85 |
+
## Model Details
|
86 |
+
|
87 |
+
### Model Description
|
88 |
+
- **Model Type:** Sentence Transformer
|
89 |
+
- **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 75c57757a97f90ad739aca51fa8bfea0e485a7f2 -->
|
90 |
+
- **Maximum Sequence Length:** 128 tokens
|
91 |
+
- **Output Dimensionality:** 768 dimensions
|
92 |
+
- **Similarity Function:** Cosine Similarity
|
93 |
+
- **Training Dataset:**
|
94 |
+
- lb-en
|
95 |
+
<!-- - **Language:** Unknown -->
|
96 |
+
<!-- - **License:** Unknown -->
|
97 |
+
|
98 |
+
### Model Sources
|
99 |
+
|
100 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
101 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
102 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
103 |
+
|
104 |
+
### Full Model Architecture
|
105 |
+
|
106 |
+
```
|
107 |
+
SentenceTransformer(
|
108 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
109 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
110 |
+
)
|
111 |
+
```
|
112 |
+
|
113 |
+
## Usage
|
114 |
+
|
115 |
+
### Direct Usage (Sentence Transformers)
|
116 |
+
|
117 |
+
First install the Sentence Transformers library:
|
118 |
+
|
119 |
+
```bash
|
120 |
+
pip install -U sentence-transformers
|
121 |
+
```
|
122 |
+
|
123 |
+
Then you can load this model and run inference.
|
124 |
+
```python
|
125 |
+
from sentence_transformers import SentenceTransformer
|
126 |
+
|
127 |
+
# Download from the 🤗 Hub
|
128 |
+
model = SentenceTransformer("aloizidis/make-multilingual-en-lb-2025-02-28_01-09-55")
|
129 |
+
# Run inference
|
130 |
+
sentences = [
|
131 |
+
'The cross-border workers should also receive more wages.',
|
132 |
+
"D'grenzarbechetr missten och me' lo'n kre'en.",
|
133 |
+
"De Néckel: Firun! Dât ass jo ailes, wèll 't get dach neischt un der Bréck gemâcht!",
|
134 |
+
]
|
135 |
+
embeddings = model.encode(sentences)
|
136 |
+
print(embeddings.shape)
|
137 |
+
# [3, 768]
|
138 |
+
|
139 |
+
# Get the similarity scores for the embeddings
|
140 |
+
similarities = model.similarity(embeddings, embeddings)
|
141 |
+
print(similarities.shape)
|
142 |
+
# [3, 3]
|
143 |
+
```
|
144 |
+
|
145 |
+
<!--
|
146 |
+
### Direct Usage (Transformers)
|
147 |
+
|
148 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
149 |
+
|
150 |
+
</details>
|
151 |
+
-->
|
152 |
+
|
153 |
+
<!--
|
154 |
+
### Downstream Usage (Sentence Transformers)
|
155 |
+
|
156 |
+
You can finetune this model on your own dataset.
|
157 |
+
|
158 |
+
<details><summary>Click to expand</summary>
|
159 |
+
|
160 |
+
</details>
|
161 |
+
-->
|
162 |
+
|
163 |
+
<!--
|
164 |
+
### Out-of-Scope Use
|
165 |
+
|
166 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
167 |
+
-->
|
168 |
+
|
169 |
+
## Evaluation
|
170 |
+
|
171 |
+
### Metrics
|
172 |
+
|
173 |
+
#### Knowledge Distillation
|
174 |
+
|
175 |
+
* Dataset: `lb-en`
|
176 |
+
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
|
177 |
+
|
178 |
+
| Metric | Value |
|
179 |
+
|:-----------------|:------------|
|
180 |
+
| **negative_mse** | **-0.4761** |
|
181 |
+
|
182 |
+
#### Translation
|
183 |
+
|
184 |
+
* Dataset: `lb-en`
|
185 |
+
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
|
186 |
+
|
187 |
+
| Metric | Value |
|
188 |
+
|:------------------|:-----------|
|
189 |
+
| src2trg_accuracy | 0.9861 |
|
190 |
+
| trg2src_accuracy | 0.9861 |
|
191 |
+
| **mean_accuracy** | **0.9861** |
|
192 |
+
|
193 |
+
<!--
|
194 |
+
## Bias, Risks and Limitations
|
195 |
+
|
196 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
197 |
+
-->
|
198 |
+
|
199 |
+
<!--
|
200 |
+
### Recommendations
|
201 |
+
|
202 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
203 |
+
-->
|
204 |
+
|
205 |
+
## Training Details
|
206 |
+
|
207 |
+
### Training Dataset
|
208 |
+
|
209 |
+
#### lb-en
|
210 |
+
|
211 |
+
* Dataset: lb-en
|
212 |
+
* Size: 40,000 training samples
|
213 |
+
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
|
214 |
+
* Approximate statistics based on the first 1000 samples:
|
215 |
+
| | english | non_english | label |
|
216 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
217 |
+
| type | string | string | list |
|
218 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 25.32 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 36.91 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
219 |
+
* Samples:
|
220 |
+
| english | non_english | label |
|
221 |
+
|:---------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------|
|
222 |
+
| <code>A lesson for the next year</code> | <code>Eng le’er fir dat anert joer</code> | <code>[0.08891881257295609, 0.20895496010780334, -0.10672671347856522, -0.03302554786205292, 0.049002278596162796, ...]</code> |
|
223 |
+
| <code>On Easter, the Maquisards' northern section organizes their big spring ball in Willy Pintsch's hall at the station.</code> | <code>Op O'schteren organisieren d'Maquisard'eiii section Nord, hire gro'sse fre'joersbal am sali Willy Pintsch op der gare.</code> | <code>[-0.08668982982635498, -0.06969941407442093, -0.0036096556577831507, 0.1605304628610611, -0.041704729199409485, ...]</code> |
|
224 |
+
| <code>The happiness, the peace is long gone now,</code> | <code>V ergângen ass nu läng dat gléck, de' fréd,</code> | <code>[0.07229219377040863, 0.3288629353046417, -0.012548360042273998, 0.06720984727144241, -0.02617395855486393, ...]</code> |
|
225 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
|
226 |
+
|
227 |
+
### Evaluation Dataset
|
228 |
+
|
229 |
+
#### lb-en
|
230 |
+
|
231 |
+
* Dataset: lb-en
|
232 |
+
* Size: 504 evaluation samples
|
233 |
+
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
|
234 |
+
* Approximate statistics based on the first 504 samples:
|
235 |
+
| | english | non_english | label |
|
236 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
237 |
+
| type | string | string | list |
|
238 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 25.23 tokens</li><li>max: 85 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 36.48 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
239 |
+
* Samples:
|
240 |
+
| english | non_english | label |
|
241 |
+
|:------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------|
|
242 |
+
| <code>But he was not the instigator of the mass murders of the Jews, his lawyer explained, and he bore no more responsibility than the others.</code> | <code>Mé hié wir net den ustêfter vun de massemuerden un de judden, erklärt sein affekot, an hicn hätt net me' verantwortong ze droen we' de' aner.</code> | <code>[0.021159790456295013, 0.11144042760133743, 0.00869293138384819, 0.004551620222628117, -0.09236127883195877, ...]</code> |
|
243 |
+
| <code>The Romanian automotive industry * For the first time in its history, Romania has started car production.</code> | <code>D’rumänesch autoindustrie * Fir d'c'schte ke'er an senger geschieht huet Rumänien d'fabrikalio'n vun'den autoen opgeholl.</code> | <code>[-0.16835248470306396, 0.14826826751232147, 0.01772368885576725, -0.027855699881911278, 0.04770198464393616, ...]</code> |
|
244 |
+
| <code>The drugs were confiscated along with the dealer's car, mobile phones and cash.</code> | <code>D'Drogen, den Auto, d'Boergeld an d'Handye si saiséiert ginn.</code> | <code>[-0.05122023820877075, 0.01204440463334322, -0.025424882769584656, 0.1286350041627884, 0.034633491188287735, ...]</code> |
|
245 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
|
246 |
+
|
247 |
+
### Training Hyperparameters
|
248 |
+
#### Non-Default Hyperparameters
|
249 |
+
|
250 |
+
- `eval_strategy`: steps
|
251 |
+
- `per_device_train_batch_size`: 32
|
252 |
+
- `per_device_eval_batch_size`: 32
|
253 |
+
- `learning_rate`: 2e-05
|
254 |
+
- `num_train_epochs`: 5
|
255 |
+
- `warmup_ratio`: 0.1
|
256 |
+
- `bf16`: True
|
257 |
+
|
258 |
+
#### All Hyperparameters
|
259 |
+
<details><summary>Click to expand</summary>
|
260 |
+
|
261 |
+
- `overwrite_output_dir`: False
|
262 |
+
- `do_predict`: False
|
263 |
+
- `eval_strategy`: steps
|
264 |
+
- `prediction_loss_only`: True
|
265 |
+
- `per_device_train_batch_size`: 32
|
266 |
+
- `per_device_eval_batch_size`: 32
|
267 |
+
- `per_gpu_train_batch_size`: None
|
268 |
+
- `per_gpu_eval_batch_size`: None
|
269 |
+
- `gradient_accumulation_steps`: 1
|
270 |
+
- `eval_accumulation_steps`: None
|
271 |
+
- `torch_empty_cache_steps`: None
|
272 |
+
- `learning_rate`: 2e-05
|
273 |
+
- `weight_decay`: 0.0
|
274 |
+
- `adam_beta1`: 0.9
|
275 |
+
- `adam_beta2`: 0.999
|
276 |
+
- `adam_epsilon`: 1e-08
|
277 |
+
- `max_grad_norm`: 1.0
|
278 |
+
- `num_train_epochs`: 5
|
279 |
+
- `max_steps`: -1
|
280 |
+
- `lr_scheduler_type`: linear
|
281 |
+
- `lr_scheduler_kwargs`: {}
|
282 |
+
- `warmup_ratio`: 0.1
|
283 |
+
- `warmup_steps`: 0
|
284 |
+
- `log_level`: passive
|
285 |
+
- `log_level_replica`: warning
|
286 |
+
- `log_on_each_node`: True
|
287 |
+
- `logging_nan_inf_filter`: True
|
288 |
+
- `save_safetensors`: True
|
289 |
+
- `save_on_each_node`: False
|
290 |
+
- `save_only_model`: False
|
291 |
+
- `restore_callback_states_from_checkpoint`: False
|
292 |
+
- `no_cuda`: False
|
293 |
+
- `use_cpu`: False
|
294 |
+
- `use_mps_device`: False
|
295 |
+
- `seed`: 42
|
296 |
+
- `data_seed`: None
|
297 |
+
- `jit_mode_eval`: False
|
298 |
+
- `use_ipex`: False
|
299 |
+
- `bf16`: True
|
300 |
+
- `fp16`: False
|
301 |
+
- `fp16_opt_level`: O1
|
302 |
+
- `half_precision_backend`: auto
|
303 |
+
- `bf16_full_eval`: False
|
304 |
+
- `fp16_full_eval`: False
|
305 |
+
- `tf32`: None
|
306 |
+
- `local_rank`: 0
|
307 |
+
- `ddp_backend`: None
|
308 |
+
- `tpu_num_cores`: None
|
309 |
+
- `tpu_metrics_debug`: False
|
310 |
+
- `debug`: []
|
311 |
+
- `dataloader_drop_last`: False
|
312 |
+
- `dataloader_num_workers`: 0
|
313 |
+
- `dataloader_prefetch_factor`: None
|
314 |
+
- `past_index`: -1
|
315 |
+
- `disable_tqdm`: False
|
316 |
+
- `remove_unused_columns`: True
|
317 |
+
- `label_names`: None
|
318 |
+
- `load_best_model_at_end`: False
|
319 |
+
- `ignore_data_skip`: False
|
320 |
+
- `fsdp`: []
|
321 |
+
- `fsdp_min_num_params`: 0
|
322 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
323 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
324 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
325 |
+
- `deepspeed`: None
|
326 |
+
- `label_smoothing_factor`: 0.0
|
327 |
+
- `optim`: adamw_torch
|
328 |
+
- `optim_args`: None
|
329 |
+
- `adafactor`: False
|
330 |
+
- `group_by_length`: False
|
331 |
+
- `length_column_name`: length
|
332 |
+
- `ddp_find_unused_parameters`: None
|
333 |
+
- `ddp_bucket_cap_mb`: None
|
334 |
+
- `ddp_broadcast_buffers`: False
|
335 |
+
- `dataloader_pin_memory`: True
|
336 |
+
- `dataloader_persistent_workers`: False
|
337 |
+
- `skip_memory_metrics`: True
|
338 |
+
- `use_legacy_prediction_loop`: False
|
339 |
+
- `push_to_hub`: False
|
340 |
+
- `resume_from_checkpoint`: None
|
341 |
+
- `hub_model_id`: None
|
342 |
+
- `hub_strategy`: every_save
|
343 |
+
- `hub_private_repo`: None
|
344 |
+
- `hub_always_push`: False
|
345 |
+
- `gradient_checkpointing`: False
|
346 |
+
- `gradient_checkpointing_kwargs`: None
|
347 |
+
- `include_inputs_for_metrics`: False
|
348 |
+
- `include_for_metrics`: []
|
349 |
+
- `eval_do_concat_batches`: True
|
350 |
+
- `fp16_backend`: auto
|
351 |
+
- `push_to_hub_model_id`: None
|
352 |
+
- `push_to_hub_organization`: None
|
353 |
+
- `mp_parameters`:
|
354 |
+
- `auto_find_batch_size`: False
|
355 |
+
- `full_determinism`: False
|
356 |
+
- `torchdynamo`: None
|
357 |
+
- `ray_scope`: last
|
358 |
+
- `ddp_timeout`: 1800
|
359 |
+
- `torch_compile`: False
|
360 |
+
- `torch_compile_backend`: None
|
361 |
+
- `torch_compile_mode`: None
|
362 |
+
- `dispatch_batches`: None
|
363 |
+
- `split_batches`: None
|
364 |
+
- `include_tokens_per_second`: False
|
365 |
+
- `include_num_input_tokens_seen`: False
|
366 |
+
- `neftune_noise_alpha`: None
|
367 |
+
- `optim_target_modules`: None
|
368 |
+
- `batch_eval_metrics`: False
|
369 |
+
- `eval_on_start`: False
|
370 |
+
- `use_liger_kernel`: False
|
371 |
+
- `eval_use_gather_object`: False
|
372 |
+
- `average_tokens_across_devices`: False
|
373 |
+
- `prompts`: None
|
374 |
+
- `batch_sampler`: batch_sampler
|
375 |
+
- `multi_dataset_batch_sampler`: proportional
|
376 |
+
|
377 |
+
</details>
|
378 |
+
|
379 |
+
### Training Logs
|
380 |
+
| Epoch | Step | Training Loss | lb-en loss | lb-en_negative_mse | lb-en_mean_accuracy |
|
381 |
+
|:------:|:----:|:-------------:|:----------:|:------------------:|:-------------------:|
|
382 |
+
| 0.08 | 100 | 0.0056 | 0.0048 | -0.7796 | 0.7887 |
|
383 |
+
| 0.16 | 200 | 0.0051 | 0.0046 | -0.7330 | 0.8373 |
|
384 |
+
| 0.24 | 300 | 0.0049 | 0.0044 | -0.6992 | 0.8740 |
|
385 |
+
| 0.32 | 400 | 0.0047 | 0.0043 | -0.6763 | 0.8889 |
|
386 |
+
| 0.4 | 500 | 0.0046 | 0.0042 | -0.6584 | 0.8988 |
|
387 |
+
| 0.48 | 600 | 0.0045 | 0.0041 | -0.6377 | 0.9067 |
|
388 |
+
| 0.56 | 700 | 0.0044 | 0.0040 | -0.6209 | 0.9206 |
|
389 |
+
| 0.64 | 800 | 0.0043 | 0.0040 | -0.6087 | 0.9266 |
|
390 |
+
| 0.72 | 900 | 0.0043 | 0.0039 | -0.5984 | 0.9395 |
|
391 |
+
| 0.8 | 1000 | 0.0042 | 0.0038 | -0.5887 | 0.9385 |
|
392 |
+
| 0.88 | 1100 | 0.0042 | 0.0038 | -0.5799 | 0.9425 |
|
393 |
+
| 0.96 | 1200 | 0.0041 | 0.0038 | -0.5725 | 0.9474 |
|
394 |
+
| 1.04 | 1300 | 0.004 | 0.0037 | -0.5690 | 0.9524 |
|
395 |
+
| 1.12 | 1400 | 0.0039 | 0.0037 | -0.5602 | 0.9554 |
|
396 |
+
| 1.2 | 1500 | 0.0038 | 0.0037 | -0.5545 | 0.9603 |
|
397 |
+
| 1.28 | 1600 | 0.0038 | 0.0036 | -0.5501 | 0.9673 |
|
398 |
+
| 1.3600 | 1700 | 0.0038 | 0.0036 | -0.5459 | 0.9643 |
|
399 |
+
| 1.44 | 1800 | 0.0037 | 0.0036 | -0.5411 | 0.9702 |
|
400 |
+
| 1.52 | 1900 | 0.0038 | 0.0036 | -0.5360 | 0.9722 |
|
401 |
+
| 1.6 | 2000 | 0.0037 | 0.0035 | -0.5326 | 0.9683 |
|
402 |
+
| 1.6800 | 2100 | 0.0037 | 0.0035 | -0.5310 | 0.9732 |
|
403 |
+
| 1.76 | 2200 | 0.0036 | 0.0035 | -0.5264 | 0.9752 |
|
404 |
+
| 1.8400 | 2300 | 0.0037 | 0.0035 | -0.5224 | 0.9792 |
|
405 |
+
| 1.92 | 2400 | 0.0036 | 0.0035 | -0.5205 | 0.9792 |
|
406 |
+
| 2.0 | 2500 | 0.0036 | 0.0034 | -0.5166 | 0.9782 |
|
407 |
+
| 2.08 | 2600 | 0.0033 | 0.0034 | -0.5137 | 0.9782 |
|
408 |
+
| 2.16 | 2700 | 0.0034 | 0.0034 | -0.5121 | 0.9812 |
|
409 |
+
| 2.24 | 2800 | 0.0033 | 0.0034 | -0.5093 | 0.9802 |
|
410 |
+
| 2.32 | 2900 | 0.0034 | 0.0034 | -0.5063 | 0.9821 |
|
411 |
+
| 2.4 | 3000 | 0.0034 | 0.0034 | -0.5051 | 0.9802 |
|
412 |
+
| 2.48 | 3100 | 0.0034 | 0.0034 | -0.5030 | 0.9812 |
|
413 |
+
| 2.56 | 3200 | 0.0033 | 0.0033 | -0.5002 | 0.9851 |
|
414 |
+
| 2.64 | 3300 | 0.0034 | 0.0033 | -0.4962 | 0.9831 |
|
415 |
+
| 2.7200 | 3400 | 0.0034 | 0.0033 | -0.4936 | 0.9831 |
|
416 |
+
| 2.8 | 3500 | 0.0033 | 0.0033 | -0.4916 | 0.9841 |
|
417 |
+
| 2.88 | 3600 | 0.0033 | 0.0033 | -0.4892 | 0.9841 |
|
418 |
+
| 2.96 | 3700 | 0.0033 | 0.0033 | -0.4871 | 0.9841 |
|
419 |
+
| 3.04 | 3800 | 0.0032 | 0.0033 | -0.4863 | 0.9861 |
|
420 |
+
| 3.12 | 3900 | 0.0031 | 0.0033 | -0.4864 | 0.9841 |
|
421 |
+
| 3.2 | 4000 | 0.0031 | 0.0033 | -0.4859 | 0.9841 |
|
422 |
+
| 3.2800 | 4100 | 0.0031 | 0.0033 | -0.4848 | 0.9871 |
|
423 |
+
| 3.36 | 4200 | 0.0031 | 0.0033 | -0.4838 | 0.9881 |
|
424 |
+
| 3.44 | 4300 | 0.0031 | 0.0032 | -0.4837 | 0.9861 |
|
425 |
+
| 3.52 | 4400 | 0.0031 | 0.0032 | -0.4817 | 0.9851 |
|
426 |
+
| 3.6 | 4500 | 0.0031 | 0.0032 | -0.4812 | 0.9841 |
|
427 |
+
| 3.68 | 4600 | 0.0031 | 0.0032 | -0.4792 | 0.9861 |
|
428 |
+
| 3.76 | 4700 | 0.0031 | 0.0032 | -0.4793 | 0.9851 |
|
429 |
+
| 3.84 | 4800 | 0.0031 | 0.0032 | -0.4779 | 0.9871 |
|
430 |
+
| 3.92 | 4900 | 0.0031 | 0.0032 | -0.4771 | 0.9861 |
|
431 |
+
| 4.0 | 5000 | 0.0031 | 0.0032 | -0.4761 | 0.9861 |
|
432 |
+
|
433 |
+
|
434 |
+
### Framework Versions
|
435 |
+
- Python: 3.11.11
|
436 |
+
- Sentence Transformers: 3.4.1
|
437 |
+
- Transformers: 4.49.0
|
438 |
+
- PyTorch: 2.6.0
|
439 |
+
- Accelerate: 1.4.0
|
440 |
+
- Datasets: 3.3.2
|
441 |
+
- Tokenizers: 0.21.0
|
442 |
+
|
443 |
+
## Citation
|
444 |
+
|
445 |
+
### BibTeX
|
446 |
+
|
447 |
+
#### Sentence Transformers
|
448 |
+
```bibtex
|
449 |
+
@inproceedings{reimers-2019-sentence-bert,
|
450 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
451 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
452 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
453 |
+
month = "11",
|
454 |
+
year = "2019",
|
455 |
+
publisher = "Association for Computational Linguistics",
|
456 |
+
url = "https://arxiv.org/abs/1908.10084",
|
457 |
+
}
|
458 |
+
```
|
459 |
+
|
460 |
+
#### MSELoss
|
461 |
+
```bibtex
|
462 |
+
@inproceedings{reimers-2020-multilingual-sentence-bert,
|
463 |
+
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
|
464 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
465 |
+
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
|
466 |
+
month = "11",
|
467 |
+
year = "2020",
|
468 |
+
publisher = "Association for Computational Linguistics",
|
469 |
+
url = "https://arxiv.org/abs/2004.09813",
|
470 |
+
}
|
471 |
+
```
|
472 |
+
|
473 |
+
<!--
|
474 |
+
## Glossary
|
475 |
+
|
476 |
+
*Clearly define terms in order to be accessible across audiences.*
|
477 |
+
-->
|
478 |
+
|
479 |
+
<!--
|
480 |
+
## Model Card Authors
|
481 |
+
|
482 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
483 |
+
-->
|
484 |
+
|
485 |
+
<!--
|
486 |
+
## Model Card Contact
|
487 |
+
|
488 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
489 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./output/make-multilingual-en-lb-2025-02-28_01-09-55/checkpoint-5000",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "xlm-roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"output_past": true,
|
22 |
+
"pad_token_id": 1,
|
23 |
+
"position_embedding_type": "absolute",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.49.0",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 250002
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.1",
|
4 |
+
"transformers": "4.49.0",
|
5 |
+
"pytorch": "2.6.0"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1bf99af3ca0f1c7e6456f56622680a9ae9d8ef2e4af5ca362d337d20bcaa9eb4
|
3 |
+
size 1112197096
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
|
3 |
+
size 17082987
|
tokenizer_config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "<mask>",
|
50 |
+
"max_length": 128,
|
51 |
+
"model_max_length": 128,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "<pad>",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "</s>",
|
57 |
+
"stride": 0,
|
58 |
+
"tokenizer_class": "XLMRobertaTokenizerFast",
|
59 |
+
"truncation_side": "right",
|
60 |
+
"truncation_strategy": "longest_first",
|
61 |
+
"unk_token": "<unk>"
|
62 |
+
}
|