Upload convert_to_linear.py with huggingface_hub
Browse files- convert_to_linear.py +96 -0
convert_to_linear.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def convert_to_linear_experts(old_module: GptOssExperts, config) -> NewGptOssExperts:
|
| 8 |
+
new_mod = NewGptOssExperts(config).to(old_module.gate_up_proj.device)
|
| 9 |
+
new_mod.alpha = old_module.alpha
|
| 10 |
+
new_mod.limit = old_module.limit
|
| 11 |
+
|
| 12 |
+
E, D, two_dexp = old_module.gate_up_proj.shape
|
| 13 |
+
|
| 14 |
+
for e in range(E):
|
| 15 |
+
# up proj
|
| 16 |
+
W_old = old_module.gate_up_proj[e].detach().to(config.torch_dtype)
|
| 17 |
+
b_old = old_module.gate_up_proj_bias[e].detach().to(config.torch_dtype)
|
| 18 |
+
new_mod.gate_up_projs[e].weight.data.copy_(W_old.transpose(0, 1))
|
| 19 |
+
new_mod.gate_up_projs[e].bias.data.copy_(b_old)
|
| 20 |
+
|
| 21 |
+
# down proj
|
| 22 |
+
Wd_old = old_module.down_proj[e].detach().to(config.torch_dtype)
|
| 23 |
+
bd_old = old_module.down_proj_bias[e].detach().to(config.torch_dtype)
|
| 24 |
+
new_mod.down_projs[e].weight.data.copy_(Wd_old.transpose(0, 1))
|
| 25 |
+
new_mod.down_projs[e].bias.data.copy_(bd_old)
|
| 26 |
+
|
| 27 |
+
return new_mod
|
| 28 |
+
|
| 29 |
+
class NewGptOssExperts(nn.Module):
|
| 30 |
+
def __init__(self, config):
|
| 31 |
+
super().__init__()
|
| 32 |
+
|
| 33 |
+
self.num_experts = config.num_local_experts
|
| 34 |
+
self.hidden_size = config.hidden_size
|
| 35 |
+
self.expert_dim = config.intermediate_size
|
| 36 |
+
self.alpha = 1.702
|
| 37 |
+
self.limit = 7.0
|
| 38 |
+
self.dtype = config.torch_dtype
|
| 39 |
+
|
| 40 |
+
self.gate_up_projs = nn.ModuleList([
|
| 41 |
+
nn.Linear(self.hidden_size, 2 * self.expert_dim, dtype=self.dtype)
|
| 42 |
+
for _ in range(self.num_experts)
|
| 43 |
+
])
|
| 44 |
+
self.down_projs = nn.ModuleList([
|
| 45 |
+
nn.Linear(self.expert_dim, self.hidden_size, dtype=self.dtype)
|
| 46 |
+
for _ in range(self.num_experts)
|
| 47 |
+
])
|
| 48 |
+
|
| 49 |
+
def forward(self,
|
| 50 |
+
hidden_states: torch.Tensor,
|
| 51 |
+
router_indices = None,
|
| 52 |
+
routing_weights = None
|
| 53 |
+
) -> torch.Tensor:
|
| 54 |
+
|
| 55 |
+
batch_size = hidden_states.shape[0]
|
| 56 |
+
hidden_states = hidden_states.reshape(-1, self.hidden_size)
|
| 57 |
+
num_experts = routing_weights.shape[1]
|
| 58 |
+
|
| 59 |
+
if self.training:
|
| 60 |
+
next_states = torch.zeros_like(hidden_states, dtype=hidden_states.dtype, device=hidden_states.device)
|
| 61 |
+
with torch.no_grad():
|
| 62 |
+
expert_mask = torch.nn.functional.one_hot(router_indices, num_classes=num_experts)
|
| 63 |
+
expert_mask = expert_mask.permute(2, 1, 0)
|
| 64 |
+
expert_hitted = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero()
|
| 65 |
+
for expert_idx in expert_hitted[:]:
|
| 66 |
+
with torch.no_grad():
|
| 67 |
+
_, token_idx = torch.where(expert_mask[expert_idx[0]])
|
| 68 |
+
current_state = hidden_states[token_idx]
|
| 69 |
+
gate_up = self.gate_up_projs[expert_idx](current_state)
|
| 70 |
+
gate, up = gate_up[..., ::2], gate_up[..., 1::2]
|
| 71 |
+
gate = gate.clamp(min=None, max=self.limit)
|
| 72 |
+
up = up.clamp(min=-self.limit, max=self.limit)
|
| 73 |
+
glu = gate * torch.sigmoid(gate * self.alpha)
|
| 74 |
+
gated_output = (up + 1) * glu
|
| 75 |
+
out = self.down_projs[expert_idx](gated_output)
|
| 76 |
+
weighted_output = out * routing_weights[token_idx, expert_idx, None]
|
| 77 |
+
next_states.index_add_(0, token_idx, weighted_output.to(hidden_states.dtype))
|
| 78 |
+
next_states = next_states.view(batch_size, -1, self.hidden_size)
|
| 79 |
+
return next_states
|
| 80 |
+
|
| 81 |
+
else:
|
| 82 |
+
X_rep = hidden_states.unsqueeze(0).expand(num_experts, -1, -1)
|
| 83 |
+
gate_up_list = [up_l(X_rep[e]) for e, up_l in enumerate(self.gate_up_projs)]
|
| 84 |
+
gate_up = torch.stack(gate_up_list, dim=0)
|
| 85 |
+
gate = gate_up[..., ::2]
|
| 86 |
+
up_h = gate_up[..., 1::2]
|
| 87 |
+
gate = gate.clamp(max=self.limit)
|
| 88 |
+
up_h = up_h.clamp(min=-self.limit, max=self.limit)
|
| 89 |
+
glu = gate * torch.sigmoid(gate * self.alpha)
|
| 90 |
+
fused = (up_h + 1) * glu
|
| 91 |
+
out_list = [down_l(fused[e]) for e, down_l in enumerate(self.down_projs)]
|
| 92 |
+
outs = torch.stack(out_list, dim=0)
|
| 93 |
+
rw = routing_weights.transpose(0, 1).unsqueeze(-1)
|
| 94 |
+
mixed = (outs * rw).sum(dim=0)
|
| 95 |
+
return mixed.view(batch_size, -1, self.hidden_size)
|
| 96 |
+
|