ilyes25 commited on
Commit
3595f38
·
verified ·
1 Parent(s): 62658e7

End of training

Browse files
Files changed (2) hide show
  1. README.md +125 -195
  2. adapter.kab.safetensors +3 -0
README.md CHANGED
@@ -1,199 +1,129 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: cc-by-nc-4.0
4
+ base_model: facebook/mms-1b-all
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - wer
9
+ - bleu
10
+ - rouge
11
+ model-index:
12
+ - name: wav2vec2-large-mms-1b-testkabtodz
13
+ results: []
14
  ---
15
 
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # wav2vec2-large-mms-1b-testkabtodz
20
+
21
+ This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.2934
24
+ - Wer: 0.3763
25
+ - Bleu: 0.4201
26
+ - Rouge: {'rouge1': 0.6991211401254616, 'rouge2': 0.5113991327668065, 'rougeL': 0.6986732788231161, 'rougeLsum': 0.6986739135320972}
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 0.001
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - gradient_accumulation_steps: 4
50
+ - total_train_batch_size: 32
51
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
+ - lr_scheduler_type: linear
53
+ - lr_scheduler_warmup_steps: 100
54
+ - num_epochs: 6
55
+ - mixed_precision_training: Native AMP
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Wer | Bleu | Rouge |
60
+ |:-------------:|:------:|:----:|:---------------:|:------:|:------:|:----------------------------------------------------------------------------------------------------------------------------:|
61
+ | 4.3997 | 0.0975 | 100 | 0.5135 | 0.5571 | 0.2220 | {'rouge1': 0.5475180597055971, 'rouge2': 0.3270968169315924, 'rougeL': 0.5466017270688334, 'rougeLsum': 0.5466539047963868} |
62
+ | 0.7974 | 0.1950 | 200 | 0.4535 | 0.5082 | 0.2685 | {'rouge1': 0.5883604555009918, 'rouge2': 0.37224278148732814, 'rougeL': 0.58778413455352, 'rougeLsum': 0.5878866254405216} |
63
+ | 0.7687 | 0.2925 | 300 | 0.4353 | 0.5107 | 0.2702 | {'rouge1': 0.5791620440545029, 'rouge2': 0.3647635082576582, 'rougeL': 0.5786726661069095, 'rougeLsum': 0.578427085732115} |
64
+ | 0.7347 | 0.3901 | 400 | 0.4203 | 0.4935 | 0.2822 | {'rouge1': 0.5933214201446024, 'rouge2': 0.3802725646533577, 'rougeL': 0.592789497390066, 'rougeLsum': 0.5928900139888104} |
65
+ | 0.739 | 0.4876 | 500 | 0.4219 | 0.4948 | 0.2853 | {'rouge1': 0.5930020254317057, 'rouge2': 0.3836260554784502, 'rougeL': 0.5924936819832712, 'rougeLsum': 0.5924175204674462} |
66
+ | 0.71 | 0.5851 | 600 | 0.4071 | 0.4845 | 0.2926 | {'rouge1': 0.6064479955042643, 'rouge2': 0.39667769990788043, 'rougeL': 0.6057773765484327, 'rougeLsum': 0.6057319550255804} |
67
+ | 0.7092 | 0.6826 | 700 | 0.4061 | 0.5079 | 0.2735 | {'rouge1': 0.5852701143314596, 'rouge2': 0.3740597630469874, 'rougeL': 0.5846072239010475, 'rougeLsum': 0.5847361320290986} |
68
+ | 0.7115 | 0.7801 | 800 | 0.3900 | 0.4704 | 0.3131 | {'rouge1': 0.6124360392599644, 'rouge2': 0.40568786403727697, 'rougeL': 0.6118523579549737, 'rougeLsum': 0.6119675977304625} |
69
+ | 0.6838 | 0.8776 | 900 | 0.4072 | 0.4770 | 0.3096 | {'rouge1': 0.6201184692333361, 'rouge2': 0.41106426012710773, 'rougeL': 0.6198915088918809, 'rougeLsum': 0.6197408359420962} |
70
+ | 0.6856 | 0.9751 | 1000 | 0.3952 | 0.4700 | 0.3107 | {'rouge1': 0.6216365358309555, 'rouge2': 0.41277678000049217, 'rougeL': 0.620856162523816, 'rougeLsum': 0.6207997080976501} |
71
+ | 0.6674 | 1.0731 | 1100 | 0.3721 | 0.4572 | 0.3294 | {'rouge1': 0.6265691010783012, 'rouge2': 0.42290161403750415, 'rougeL': 0.6261639876595877, 'rougeLsum': 0.6261591135372615} |
72
+ | 0.6724 | 1.1706 | 1200 | 0.3736 | 0.4499 | 0.3343 | {'rouge1': 0.6336199282955304, 'rouge2': 0.4300982515566308, 'rougeL': 0.6330532552585475, 'rougeLsum': 0.633105822459274} |
73
+ | 0.6632 | 1.2682 | 1300 | 0.3728 | 0.4445 | 0.3389 | {'rouge1': 0.6346996622011346, 'rouge2': 0.4307222639248516, 'rougeL': 0.6343748576151161, 'rougeLsum': 0.6341498296555887} |
74
+ | 0.6657 | 1.3657 | 1400 | 0.3729 | 0.4522 | 0.3369 | {'rouge1': 0.6397041793580083, 'rouge2': 0.43442104995643704, 'rougeL': 0.6390537417286732, 'rougeLsum': 0.6390297337673353} |
75
+ | 0.6518 | 1.4632 | 1500 | 0.3665 | 0.4496 | 0.3342 | {'rouge1': 0.6290383024547792, 'rouge2': 0.42389320352057036, 'rougeL': 0.6288306745091069, 'rougeLsum': 0.6287260862882811} |
76
+ | 0.6449 | 1.5607 | 1600 | 0.3660 | 0.4428 | 0.3433 | {'rouge1': 0.6366059619022576, 'rouge2': 0.432127142607018, 'rougeL': 0.6361950274472504, 'rougeLsum': 0.6362311315882483} |
77
+ | 0.6504 | 1.6582 | 1700 | 0.3610 | 0.4404 | 0.3437 | {'rouge1': 0.6446583030590606, 'rouge2': 0.441441091990041, 'rougeL': 0.6441935623170799, 'rougeLsum': 0.6441440891668418} |
78
+ | 0.6518 | 1.7557 | 1800 | 0.3567 | 0.4356 | 0.3490 | {'rouge1': 0.6414408742516806, 'rouge2': 0.438412441455466, 'rougeL': 0.6410284997921896, 'rougeLsum': 0.6409023788035733} |
79
+ | 0.6365 | 1.8532 | 1900 | 0.3551 | 0.4306 | 0.3556 | {'rouge1': 0.6546014266867779, 'rouge2': 0.4541339617751781, 'rougeL': 0.6541955004535241, 'rougeLsum': 0.6542146368444082} |
80
+ | 0.6461 | 1.9508 | 2000 | 0.3474 | 0.4320 | 0.3529 | {'rouge1': 0.6493813027870413, 'rouge2': 0.44870066279659765, 'rougeL': 0.6486450521361194, 'rougeLsum': 0.6488808404178003} |
81
+ | 0.6455 | 2.0488 | 2100 | 0.3526 | 0.4336 | 0.3502 | {'rouge1': 0.6464633128513417, 'rouge2': 0.44548114036987474, 'rougeL': 0.6460289414664477, 'rougeLsum': 0.6461897742988368} |
82
+ | 0.6317 | 2.1463 | 2200 | 0.3535 | 0.4328 | 0.3489 | {'rouge1': 0.6459287664424098, 'rouge2': 0.4431699811723434, 'rougeL': 0.6457213736715056, 'rougeLsum': 0.6457315635195204} |
83
+ | 0.6194 | 2.2438 | 2300 | 0.3438 | 0.4243 | 0.3607 | {'rouge1': 0.6582903194787642, 'rouge2': 0.4586001978434361, 'rougeL': 0.657779263560347, 'rougeLsum': 0.6577134105856606} |
84
+ | 0.6327 | 2.3413 | 2400 | 0.3475 | 0.4403 | 0.3480 | {'rouge1': 0.6437891592593289, 'rouge2': 0.44349428929588836, 'rougeL': 0.6434560290609752, 'rougeLsum': 0.6434450349375109} |
85
+ | 0.6226 | 2.4388 | 2500 | 0.3396 | 0.4257 | 0.3641 | {'rouge1': 0.6540925308500153, 'rouge2': 0.4547444984600552, 'rougeL': 0.6535404954649788, 'rougeLsum': 0.6534025409179112} |
86
+ | 0.6175 | 2.5363 | 2600 | 0.3420 | 0.4238 | 0.3618 | {'rouge1': 0.6570293538260654, 'rouge2': 0.45661791700993576, 'rougeL': 0.6565349834626244, 'rougeLsum': 0.6563589283917969} |
87
+ | 0.6087 | 2.6338 | 2700 | 0.3378 | 0.4340 | 0.3562 | {'rouge1': 0.6470455955080758, 'rouge2': 0.4490930911063734, 'rougeL': 0.6470109060599167, 'rougeLsum': 0.6468990937615842} |
88
+ | 0.6136 | 2.7314 | 2800 | 0.3357 | 0.4340 | 0.3569 | {'rouge1': 0.6462711100612597, 'rouge2': 0.44787292745812923, 'rougeL': 0.6457431436135709, 'rougeLsum': 0.6457443356600687} |
89
+ | 0.603 | 2.8289 | 2900 | 0.3333 | 0.4211 | 0.3665 | {'rouge1': 0.658326692310857, 'rouge2': 0.4591672202918055, 'rougeL': 0.6579324587764817, 'rougeLsum': 0.657831017441442} |
90
+ | 0.6111 | 2.9264 | 3000 | 0.3278 | 0.4115 | 0.3769 | {'rouge1': 0.6680275850005191, 'rouge2': 0.47111044939536956, 'rougeL': 0.667594152546402, 'rougeLsum': 0.6675417104884547} |
91
+ | 0.5823 | 3.0244 | 3100 | 0.3259 | 0.4138 | 0.3738 | {'rouge1': 0.6658105281688206, 'rouge2': 0.46831258779891827, 'rougeL': 0.6654463258976879, 'rougeLsum': 0.6653623068947464} |
92
+ | 0.596 | 3.1219 | 3200 | 0.3291 | 0.4075 | 0.3857 | {'rouge1': 0.6760034844772485, 'rouge2': 0.48075322253291103, 'rougeL': 0.6753352830167898, 'rougeLsum': 0.6753654994638207} |
93
+ | 0.585 | 3.2194 | 3300 | 0.3218 | 0.4066 | 0.3854 | {'rouge1': 0.6708033471134076, 'rouge2': 0.4760878515017991, 'rougeL': 0.6704396025219446, 'rougeLsum': 0.6705375169622321} |
94
+ | 0.5966 | 3.3169 | 3400 | 0.3225 | 0.4046 | 0.3855 | {'rouge1': 0.6733506484650071, 'rouge2': 0.47866589105906143, 'rougeL': 0.6725823331259932, 'rougeLsum': 0.6726322301227529} |
95
+ | 0.5927 | 3.4144 | 3500 | 0.3225 | 0.4036 | 0.3837 | {'rouge1': 0.6763429608911748, 'rouge2': 0.4799554819160149, 'rougeL': 0.6760199809645441, 'rougeLsum': 0.6759470534272627} |
96
+ | 0.5916 | 3.5119 | 3600 | 0.3211 | 0.3978 | 0.3948 | {'rouge1': 0.6835849587362359, 'rouge2': 0.49067004972462647, 'rougeL': 0.6830631826963516, 'rougeLsum': 0.683021270557737} |
97
+ | 0.5985 | 3.6095 | 3700 | 0.3193 | 0.3950 | 0.3971 | {'rouge1': 0.6838483117017133, 'rouge2': 0.49042401786291456, 'rougeL': 0.6832829603653612, 'rougeLsum': 0.6833601954138526} |
98
+ | 0.5967 | 3.7070 | 3800 | 0.3196 | 0.3944 | 0.3977 | {'rouge1': 0.6832470151375148, 'rouge2': 0.48997365042491053, 'rougeL': 0.6828971433052323, 'rougeLsum': 0.6826154295596226} |
99
+ | 0.5861 | 3.8045 | 3900 | 0.3164 | 0.3953 | 0.3966 | {'rouge1': 0.6815194009337533, 'rouge2': 0.48901293150413283, 'rougeL': 0.6811599766209577, 'rougeLsum': 0.681167364543434} |
100
+ | 0.5744 | 3.9020 | 4000 | 0.3115 | 0.3988 | 0.3949 | {'rouge1': 0.677956894381051, 'rouge2': 0.48577956453068094, 'rougeL': 0.677533258370969, 'rougeLsum': 0.6775310259371528} |
101
+ | 0.6032 | 3.9995 | 4100 | 0.3159 | 0.4112 | 0.3833 | {'rouge1': 0.666858825858121, 'rouge2': 0.47345226473180235, 'rougeL': 0.666467300377577, 'rougeLsum': 0.666485598809812} |
102
+ | 0.5642 | 4.0975 | 4200 | 0.3107 | 0.3960 | 0.3965 | {'rouge1': 0.6798209619380302, 'rouge2': 0.4877476049191384, 'rougeL': 0.6792681025423539, 'rougeLsum': 0.679441807529453} |
103
+ | 0.5772 | 4.1950 | 4300 | 0.3124 | 0.4021 | 0.3907 | {'rouge1': 0.6769968634627295, 'rouge2': 0.4855589558164317, 'rougeL': 0.6763733852000889, 'rougeLsum': 0.6764190462864809} |
104
+ | 0.5667 | 4.2925 | 4400 | 0.3090 | 0.3989 | 0.3963 | {'rouge1': 0.6784269657572182, 'rouge2': 0.48622812356075396, 'rougeL': 0.6778490035977014, 'rougeLsum': 0.6776967017467932} |
105
+ | 0.5713 | 4.3901 | 4500 | 0.3080 | 0.3925 | 0.4029 | {'rouge1': 0.6803911080488889, 'rouge2': 0.4889196805179151, 'rougeL': 0.679897767360062, 'rougeLsum': 0.6799181233054294} |
106
+ | 0.575 | 4.4876 | 4600 | 0.3069 | 0.3890 | 0.4032 | {'rouge1': 0.6866256247806055, 'rouge2': 0.4947643833678781, 'rougeL': 0.6863600226556883, 'rougeLsum': 0.6862665256307836} |
107
+ | 0.5669 | 4.5851 | 4700 | 0.3042 | 0.3886 | 0.4048 | {'rouge1': 0.6873428477118608, 'rouge2': 0.49739034530961257, 'rougeL': 0.6869537171773277, 'rougeLsum': 0.6869787755670816} |
108
+ | 0.563 | 4.6826 | 4800 | 0.3085 | 0.4161 | 0.3792 | {'rouge1': 0.6615511703414414, 'rouge2': 0.4676904378632397, 'rougeL': 0.6614414779567332, 'rougeLsum': 0.661189370181686} |
109
+ | 0.5465 | 4.7801 | 4900 | 0.3041 | 0.3921 | 0.4008 | {'rouge1': 0.6845900895016952, 'rouge2': 0.4927761748243858, 'rougeL': 0.684031365756208, 'rougeLsum': 0.6840579744316673} |
110
+ | 0.5703 | 4.8776 | 5000 | 0.3009 | 0.3863 | 0.4069 | {'rouge1': 0.6886709663424477, 'rouge2': 0.49819776939282057, 'rougeL': 0.6881154820537174, 'rougeLsum': 0.6883937877015258} |
111
+ | 0.5591 | 4.9751 | 5100 | 0.3016 | 0.3881 | 0.4052 | {'rouge1': 0.6889386752704709, 'rouge2': 0.4983154761005506, 'rougeL': 0.6887126877038267, 'rougeLsum': 0.6888475857510377} |
112
+ | 0.5447 | 5.0731 | 5200 | 0.2988 | 0.3783 | 0.4174 | {'rouge1': 0.6970646487324009, 'rouge2': 0.5084578165741072, 'rougeL': 0.6968278006524977, 'rougeLsum': 0.696619847658498} |
113
+ | 0.5569 | 5.1706 | 5300 | 0.2979 | 0.3792 | 0.4168 | {'rouge1': 0.6961276289823202, 'rouge2': 0.5070859993554945, 'rougeL': 0.6958119782278983, 'rougeLsum': 0.6956873029334603} |
114
+ | 0.55 | 5.2682 | 5400 | 0.2971 | 0.3805 | 0.4133 | {'rouge1': 0.6955416923122605, 'rouge2': 0.5065597123927292, 'rougeL': 0.6952089770716992, 'rougeLsum': 0.6951133501808373} |
115
+ | 0.5488 | 5.3657 | 5500 | 0.2977 | 0.3764 | 0.4190 | {'rouge1': 0.6997508899061681, 'rouge2': 0.511478673711731, 'rougeL': 0.6995150573688741, 'rougeLsum': 0.6993470178997533} |
116
+ | 0.5616 | 5.4632 | 5600 | 0.2965 | 0.3732 | 0.4235 | {'rouge1': 0.7013465455303209, 'rouge2': 0.5139126595456542, 'rougeL': 0.7008859589300989, 'rougeLsum': 0.7008571800466421} |
117
+ | 0.5511 | 5.5607 | 5700 | 0.2955 | 0.3755 | 0.4198 | {'rouge1': 0.6979003572654013, 'rouge2': 0.5104101490913873, 'rougeL': 0.6974357128935622, 'rougeLsum': 0.6976939197435674} |
118
+ | 0.5475 | 5.6582 | 5800 | 0.2944 | 0.3744 | 0.4224 | {'rouge1': 0.6997485561362005, 'rouge2': 0.5117237925763095, 'rougeL': 0.699315501838293, 'rougeLsum': 0.6993609881095812} |
119
+ | 0.535 | 5.7557 | 5900 | 0.2943 | 0.3745 | 0.4227 | {'rouge1': 0.7004123958977562, 'rouge2': 0.5130778231448121, 'rougeL': 0.6999992378819626, 'rougeLsum': 0.6999034701936646} |
120
+ | 0.5381 | 5.8532 | 6000 | 0.2939 | 0.3756 | 0.4204 | {'rouge1': 0.6993128402555228, 'rouge2': 0.5118520741032332, 'rougeL': 0.6990872979187841, 'rougeLsum': 0.6988728786986375} |
121
+ | 0.5542 | 5.9508 | 6100 | 0.2934 | 0.3763 | 0.4201 | {'rouge1': 0.6991211401254616, 'rouge2': 0.5113991327668065, 'rougeL': 0.6986732788231161, 'rougeLsum': 0.6986739135320972} |
122
+
123
+
124
+ ### Framework versions
125
+
126
+ - Transformers 4.49.0
127
+ - Pytorch 2.6.0+cu124
128
+ - Datasets 3.2.0
129
+ - Tokenizers 0.21.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adapter.kab.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43634833577d4810165fb5782a86a7868e4e3f4a0b97193ed61f150778d00256
3
+ size 8952268