ilyes25 commited on
Commit
92b99ee
·
verified ·
1 Parent(s): ada3f78

End of training

Browse files
Files changed (3) hide show
  1. README.md +184 -195
  2. adapter.ardz.safetensors +3 -0
  3. model.safetensors +1 -1
README.md CHANGED
@@ -1,199 +1,188 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: cc-by-nc-4.0
4
+ base_model: facebook/mms-1b-all
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - wer
9
+ - bleu
10
+ - rouge
11
+ model-index:
12
+ - name: ardzdirect3
13
+ results: []
14
  ---
15
 
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # ardzdirect3
20
+
21
+ This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.3352
24
+ - Wer: 0.3954
25
+ - Bleu: 0.3608
26
+ - Rouge: {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396}
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 0.001
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - gradient_accumulation_steps: 4
50
+ - total_train_batch_size: 32
51
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
+ - lr_scheduler_type: linear
53
+ - lr_scheduler_warmup_steps: 100
54
+ - num_epochs: 100
55
+ - mixed_precision_training: Native AMP
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Wer | Bleu | Rouge |
60
+ |:-------------:|:-------:|:-----:|:---------------:|:------:|:------:|:---------------------------------------------------------------------------------------------------------------------:|
61
+ | 2.9863 | 0.8316 | 100 | 0.4937 | 0.6871 | 0.0964 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
62
+ | 0.5365 | 1.6570 | 200 | 0.4196 | 0.6320 | 0.1448 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
63
+ | 0.5121 | 2.4823 | 300 | 0.3883 | 0.6201 | 0.1222 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
64
+ | 0.4701 | 3.3077 | 400 | 0.3702 | 0.6024 | 0.1588 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
65
+ | 0.4476 | 4.1331 | 500 | 0.3821 | 0.5980 | 0.1575 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
66
+ | 0.4407 | 4.9647 | 600 | 0.3634 | 0.5930 | 0.1459 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
67
+ | 0.4344 | 5.7900 | 700 | 0.3873 | 0.6079 | 0.1450 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
68
+ | 0.4132 | 6.6154 | 800 | 0.3444 | 0.5699 | 0.1809 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
69
+ | 0.402 | 7.4407 | 900 | 0.3407 | 0.5742 | 0.1865 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
70
+ | 0.4138 | 8.2661 | 1000 | 0.3333 | 0.5716 | 0.1840 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
71
+ | 0.3756 | 9.0915 | 1100 | 0.3290 | 0.5544 | 0.1948 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
72
+ | 0.3815 | 9.9231 | 1200 | 0.3179 | 0.5565 | 0.1954 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
73
+ | 0.3803 | 10.7484 | 1300 | 0.3309 | 0.5653 | 0.2007 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
74
+ | 0.3692 | 11.5738 | 1400 | 0.3224 | 0.5293 | 0.2181 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
75
+ | 0.3515 | 12.3992 | 1500 | 0.3184 | 0.5325 | 0.2108 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
76
+ | 0.3617 | 13.2245 | 1600 | 0.3169 | 0.5265 | 0.2133 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
77
+ | 0.3612 | 14.0499 | 1700 | 0.3344 | 0.5434 | 0.2035 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
78
+ | 0.3378 | 14.8815 | 1800 | 0.3066 | 0.5181 | 0.2336 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
79
+ | 0.3293 | 15.7069 | 1900 | 0.3110 | 0.5093 | 0.2416 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
80
+ | 0.3478 | 16.5322 | 2000 | 0.3573 | 0.5310 | 0.2230 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
81
+ | 0.3226 | 17.3576 | 2100 | 0.3035 | 0.5040 | 0.2425 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
82
+ | 0.3137 | 18.1830 | 2200 | 0.3113 | 0.5234 | 0.2316 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
83
+ | 0.3266 | 19.0083 | 2300 | 0.3052 | 0.5031 | 0.2428 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
84
+ | 0.2973 | 19.8399 | 2400 | 0.3055 | 0.4865 | 0.2619 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
85
+ | 0.3039 | 20.6653 | 2500 | 0.3020 | 0.4795 | 0.2696 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
86
+ | 0.3018 | 21.4906 | 2600 | 0.3252 | 0.5102 | 0.2383 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
87
+ | 0.3025 | 22.3160 | 2700 | 0.3067 | 0.4716 | 0.2763 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
88
+ | 0.2929 | 23.1414 | 2800 | 0.3071 | 0.4781 | 0.2687 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
89
+ | 0.2885 | 23.9730 | 2900 | 0.3017 | 0.5065 | 0.2563 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
90
+ | 0.2935 | 24.7983 | 3000 | 0.3871 | 0.5154 | 0.2333 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
91
+ | 0.2939 | 25.6237 | 3100 | 0.3189 | 0.5037 | 0.2514 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
92
+ | 0.2858 | 26.4491 | 3200 | 0.3106 | 0.4642 | 0.2885 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
93
+ | 0.2926 | 27.2744 | 3300 | 0.2982 | 0.4556 | 0.2999 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
94
+ | 0.274 | 28.0998 | 3400 | 0.3088 | 0.4657 | 0.2858 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
95
+ | 0.2681 | 28.9314 | 3500 | 0.3182 | 0.4578 | 0.2948 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
96
+ | 0.2799 | 29.7568 | 3600 | 0.2925 | 0.4558 | 0.2977 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
97
+ | 0.258 | 30.5821 | 3700 | 0.3169 | 0.4549 | 0.2988 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
98
+ | 0.2634 | 31.4075 | 3800 | 0.2939 | 0.4439 | 0.3075 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
99
+ | 0.2555 | 32.2328 | 3900 | 0.2938 | 0.4578 | 0.2989 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
100
+ | 0.2577 | 33.0582 | 4000 | 0.3038 | 0.4393 | 0.3048 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
101
+ | 0.2445 | 33.8898 | 4100 | 0.2940 | 0.4483 | 0.3064 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
102
+ | 0.2436 | 34.7152 | 4200 | 0.2979 | 0.4344 | 0.3174 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
103
+ | 0.2456 | 35.5405 | 4300 | 0.2960 | 0.4340 | 0.3231 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
104
+ | 0.2364 | 36.3659 | 4400 | 0.2936 | 0.4372 | 0.3214 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
105
+ | 0.2329 | 37.1913 | 4500 | 0.3089 | 0.4410 | 0.3079 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
106
+ | 0.2425 | 38.0166 | 4600 | 0.3029 | 0.4504 | 0.3077 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
107
+ | 0.232 | 38.8482 | 4700 | 0.3002 | 0.4478 | 0.3111 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
108
+ | 0.2205 | 39.6736 | 4800 | 0.2974 | 0.4404 | 0.3163 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
109
+ | 0.2248 | 40.4990 | 4900 | 0.3078 | 0.4463 | 0.3151 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
110
+ | 0.2289 | 41.3243 | 5000 | 0.3009 | 0.4270 | 0.3323 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
111
+ | 0.216 | 42.1497 | 5100 | 0.3164 | 0.4360 | 0.3136 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
112
+ | 0.2248 | 42.9813 | 5200 | 0.3166 | 0.4440 | 0.3147 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
113
+ | 0.212 | 43.8067 | 5300 | 0.3371 | 0.4537 | 0.2978 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
114
+ | 0.2126 | 44.6320 | 5400 | 0.3061 | 0.4247 | 0.3345 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
115
+ | 0.2129 | 45.4574 | 5500 | 0.3079 | 0.4335 | 0.3195 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
116
+ | 0.2212 | 46.2827 | 5600 | 0.3065 | 0.4250 | 0.3317 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
117
+ | 0.2102 | 47.1081 | 5700 | 0.3139 | 0.4373 | 0.3201 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
118
+ | 0.209 | 47.9397 | 5800 | 0.3076 | 0.4217 | 0.3273 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
119
+ | 0.2102 | 48.7651 | 5900 | 0.3114 | 0.4269 | 0.3208 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
120
+ | 0.2018 | 49.5904 | 6000 | 0.3046 | 0.4248 | 0.3326 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
121
+ | 0.1943 | 50.4158 | 6100 | 0.3037 | 0.4179 | 0.3387 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
122
+ | 0.1993 | 51.2412 | 6200 | 0.3083 | 0.4239 | 0.3283 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
123
+ | 0.2052 | 52.0665 | 6300 | 0.3117 | 0.4236 | 0.3274 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
124
+ | 0.1949 | 52.8981 | 6400 | 0.3048 | 0.4182 | 0.3349 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
125
+ | 0.1899 | 53.7235 | 6500 | 0.3148 | 0.4175 | 0.3329 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
126
+ | 0.1948 | 54.5489 | 6600 | 0.3129 | 0.4211 | 0.3357 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
127
+ | 0.1913 | 55.3742 | 6700 | 0.3148 | 0.4158 | 0.3368 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
128
+ | 0.1913 | 56.1996 | 6800 | 0.3163 | 0.4273 | 0.3260 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
129
+ | 0.1959 | 57.0249 | 6900 | 0.3086 | 0.4143 | 0.3396 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
130
+ | 0.1847 | 57.8565 | 7000 | 0.3149 | 0.4159 | 0.3401 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
131
+ | 0.1838 | 58.6819 | 7100 | 0.3135 | 0.4062 | 0.3484 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
132
+ | 0.1962 | 59.5073 | 7200 | 0.3168 | 0.4139 | 0.3400 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
133
+ | 0.1788 | 60.3326 | 7300 | 0.3162 | 0.4297 | 0.3252 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
134
+ | 0.1818 | 61.1580 | 7400 | 0.3122 | 0.4043 | 0.3543 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
135
+ | 0.1788 | 61.9896 | 7500 | 0.3162 | 0.4279 | 0.3264 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
136
+ | 0.1782 | 62.8150 | 7600 | 0.3172 | 0.4151 | 0.3442 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
137
+ | 0.1766 | 63.6403 | 7700 | 0.3188 | 0.4102 | 0.3451 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
138
+ | 0.166 | 64.4657 | 7800 | 0.3230 | 0.4218 | 0.3361 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
139
+ | 0.1782 | 65.2911 | 7900 | 0.3219 | 0.4102 | 0.3425 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
140
+ | 0.1738 | 66.1164 | 8000 | 0.3223 | 0.4108 | 0.3450 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
141
+ | 0.171 | 66.9480 | 8100 | 0.3195 | 0.4103 | 0.3452 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
142
+ | 0.1747 | 67.7734 | 8200 | 0.3259 | 0.4150 | 0.3386 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
143
+ | 0.1686 | 68.5988 | 8300 | 0.3273 | 0.4155 | 0.3369 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
144
+ | 0.1688 | 69.4241 | 8400 | 0.3144 | 0.4154 | 0.3376 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
145
+ | 0.1697 | 70.2495 | 8500 | 0.3222 | 0.4048 | 0.3534 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
146
+ | 0.1643 | 71.0748 | 8600 | 0.3168 | 0.4083 | 0.3477 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
147
+ | 0.1643 | 71.9064 | 8700 | 0.3206 | 0.4073 | 0.3476 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
148
+ | 0.168 | 72.7318 | 8800 | 0.3332 | 0.4115 | 0.3437 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
149
+ | 0.1631 | 73.5572 | 8900 | 0.3298 | 0.4032 | 0.3520 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
150
+ | 0.1598 | 74.3825 | 9000 | 0.3245 | 0.4026 | 0.3550 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
151
+ | 0.1602 | 75.2079 | 9100 | 0.3247 | 0.4016 | 0.3502 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
152
+ | 0.1601 | 76.0333 | 9200 | 0.3232 | 0.4010 | 0.3579 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
153
+ | 0.1576 | 76.8649 | 9300 | 0.3231 | 0.4006 | 0.3522 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
154
+ | 0.1563 | 77.6902 | 9400 | 0.3274 | 0.4012 | 0.3516 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
155
+ | 0.1623 | 78.5156 | 9500 | 0.3319 | 0.4006 | 0.3555 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
156
+ | 0.1548 | 79.3410 | 9600 | 0.3283 | 0.3961 | 0.3623 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
157
+ | 0.1528 | 80.1663 | 9700 | 0.3269 | 0.3999 | 0.3579 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
158
+ | 0.1623 | 80.9979 | 9800 | 0.3296 | 0.4032 | 0.3551 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
159
+ | 0.1505 | 81.8233 | 9900 | 0.3332 | 0.4076 | 0.3445 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
160
+ | 0.151 | 82.6486 | 10000 | 0.3267 | 0.4029 | 0.3555 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
161
+ | 0.157 | 83.4740 | 10100 | 0.3336 | 0.4029 | 0.3537 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
162
+ | 0.1555 | 84.2994 | 10200 | 0.3352 | 0.4055 | 0.3481 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
163
+ | 0.1478 | 85.1247 | 10300 | 0.3371 | 0.4118 | 0.3425 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
164
+ | 0.1475 | 85.9563 | 10400 | 0.3284 | 0.4050 | 0.3493 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
165
+ | 0.1529 | 86.7817 | 10500 | 0.3322 | 0.4018 | 0.3523 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
166
+ | 0.1476 | 87.6071 | 10600 | 0.3322 | 0.4010 | 0.3545 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
167
+ | 0.1455 | 88.4324 | 10700 | 0.3350 | 0.4011 | 0.3548 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
168
+ | 0.1521 | 89.2578 | 10800 | 0.3336 | 0.3979 | 0.3581 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
169
+ | 0.1464 | 90.0832 | 10900 | 0.3367 | 0.3989 | 0.3566 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
170
+ | 0.1402 | 90.9148 | 11000 | 0.3339 | 0.3978 | 0.3585 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
171
+ | 0.1442 | 91.7401 | 11100 | 0.3358 | 0.3960 | 0.3616 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
172
+ | 0.1483 | 92.5655 | 11200 | 0.3348 | 0.3958 | 0.3635 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
173
+ | 0.142 | 93.3909 | 11300 | 0.3353 | 0.3941 | 0.3645 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
174
+ | 0.1444 | 94.2162 | 11400 | 0.3379 | 0.3950 | 0.3620 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
175
+ | 0.1432 | 95.0416 | 11500 | 0.3357 | 0.3970 | 0.3596 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
176
+ | 0.1439 | 95.8732 | 11600 | 0.3343 | 0.3957 | 0.3609 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
177
+ | 0.1429 | 96.6985 | 11700 | 0.3344 | 0.3961 | 0.3596 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
178
+ | 0.1406 | 97.5239 | 11800 | 0.3349 | 0.3949 | 0.3605 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
179
+ | 0.1395 | 98.3493 | 11900 | 0.3350 | 0.3962 | 0.3590 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
180
+ | 0.1428 | 99.1746 | 12000 | 0.3352 | 0.3954 | 0.3608 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
181
+
182
+
183
+ ### Framework versions
184
+
185
+ - Transformers 4.49.0
186
+ - Pytorch 2.6.0+cu124
187
+ - Datasets 3.2.0
188
+ - Tokenizers 0.21.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adapter.ardz.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4141d99019ca4112708442752e806c640af454ebe5e5eeffe8832a9ef856a755
3
+ size 8936896
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8aca73e78598b841b975b253675d464ec6cf67936f524a06ed0277162ab1c209
3
  size 3859029272
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3919db9b49f4f22d5c101dca1739af4e271e62fe732a7d778bf05c034de7fb9f
3
  size 3859029272