ilyes25 commited on
Commit
628c018
·
verified ·
1 Parent(s): ad97c12

End of training

Browse files
Files changed (2) hide show
  1. README.md +112 -195
  2. adapter.ardz.safetensors +3 -0
README.md CHANGED
@@ -1,199 +1,116 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: cc-by-nc-4.0
4
+ base_model: facebook/mms-1b-all
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - wer
9
+ - bleu
10
+ - rouge
11
+ model-index:
12
+ - name: ardzdirect2
13
+ results: []
14
  ---
15
 
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # ardzdirect2
20
+
21
+ This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.2790
24
+ - Wer: 0.4103
25
+ - Bleu: 0.3474
26
+ - Rouge: {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 0.001
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - gradient_accumulation_steps: 4
50
+ - total_train_batch_size: 32
51
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
+ - lr_scheduler_type: linear
53
+ - lr_scheduler_warmup_steps: 100
54
+ - num_epochs: 40
55
+ - mixed_precision_training: Native AMP
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Wer | Bleu | Rouge |
60
+ |:-------------:|:-------:|:----:|:---------------:|:------:|:------:|:---------------------------------------------------------------------------------------------------------------------:|
61
+ | 3.1012 | 0.8316 | 100 | 0.4876 | 0.6806 | 0.0921 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
62
+ | 0.5491 | 1.6570 | 200 | 0.4093 | 0.6217 | 0.1411 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
63
+ | 0.5057 | 2.4823 | 300 | 0.3771 | 0.6112 | 0.1300 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
64
+ | 0.4825 | 3.3077 | 400 | 0.3685 | 0.6012 | 0.1617 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
65
+ | 0.4542 | 4.1331 | 500 | 0.3629 | 0.5924 | 0.1538 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
66
+ | 0.4481 | 4.9647 | 600 | 0.3563 | 0.5766 | 0.1571 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
67
+ | 0.4405 | 5.7900 | 700 | 0.3521 | 0.5841 | 0.1523 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
68
+ | 0.417 | 6.6154 | 800 | 0.3460 | 0.5775 | 0.1802 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
69
+ | 0.4034 | 7.4407 | 900 | 0.3478 | 0.5748 | 0.1852 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
70
+ | 0.4108 | 8.2661 | 1000 | 0.3490 | 0.5529 | 0.1896 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
71
+ | 0.3858 | 9.0915 | 1100 | 0.3277 | 0.5514 | 0.1920 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
72
+ | 0.3831 | 9.9231 | 1200 | 0.3192 | 0.5474 | 0.2086 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
73
+ | 0.3793 | 10.7484 | 1300 | 0.3265 | 0.5316 | 0.2156 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
74
+ | 0.3691 | 11.5738 | 1400 | 0.3161 | 0.5341 | 0.2193 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
75
+ | 0.3629 | 12.3992 | 1500 | 0.3108 | 0.5181 | 0.2280 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
76
+ | 0.3619 | 13.2245 | 1600 | 0.3102 | 0.5214 | 0.2184 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
77
+ | 0.356 | 14.0499 | 1700 | 0.3249 | 0.5145 | 0.2345 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
78
+ | 0.3392 | 14.8815 | 1800 | 0.3409 | 0.5234 | 0.2352 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
79
+ | 0.3254 | 15.7069 | 1900 | 0.3034 | 0.5288 | 0.2279 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
80
+ | 0.3446 | 16.5322 | 2000 | 0.3273 | 0.5074 | 0.2459 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
81
+ | 0.3197 | 17.3576 | 2100 | 0.3097 | 0.5306 | 0.2287 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
82
+ | 0.3167 | 18.1830 | 2200 | 0.3042 | 0.5164 | 0.2428 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
83
+ | 0.3296 | 19.0083 | 2300 | 0.3053 | 0.5265 | 0.2271 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
84
+ | 0.3158 | 19.8399 | 2400 | 0.3004 | 0.4763 | 0.2703 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
85
+ | 0.3035 | 20.6653 | 2500 | 0.2917 | 0.4649 | 0.2836 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
86
+ | 0.3026 | 21.4906 | 2600 | 0.2993 | 0.5098 | 0.2498 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
87
+ | 0.3023 | 22.3160 | 2700 | 0.3164 | 0.4760 | 0.2700 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
88
+ | 0.2879 | 23.1414 | 2800 | 0.2825 | 0.4441 | 0.3079 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
89
+ | 0.2834 | 23.9730 | 2900 | 0.2828 | 0.4685 | 0.2866 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
90
+ | 0.2793 | 24.7983 | 3000 | 0.2938 | 0.4437 | 0.3082 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
91
+ | 0.2706 | 25.6237 | 3100 | 0.2827 | 0.4508 | 0.3054 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
92
+ | 0.2631 | 26.4491 | 3200 | 0.2871 | 0.4309 | 0.3264 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
93
+ | 0.2742 | 27.2744 | 3300 | 0.2814 | 0.4360 | 0.3181 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
94
+ | 0.2537 | 28.0998 | 3400 | 0.2923 | 0.4320 | 0.3197 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
95
+ | 0.2576 | 28.9314 | 3500 | 0.2784 | 0.4296 | 0.3238 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
96
+ | 0.2588 | 29.7568 | 3600 | 0.2830 | 0.4280 | 0.3304 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
97
+ | 0.243 | 30.5821 | 3700 | 0.2860 | 0.4254 | 0.3331 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
98
+ | 0.2504 | 31.4075 | 3800 | 0.2829 | 0.4171 | 0.3403 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
99
+ | 0.2491 | 32.2328 | 3900 | 0.2850 | 0.4194 | 0.3374 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
100
+ | 0.2432 | 33.0582 | 4000 | 0.2901 | 0.4158 | 0.3359 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
101
+ | 0.2383 | 33.8898 | 4100 | 0.2801 | 0.4171 | 0.3366 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
102
+ | 0.2314 | 34.7152 | 4200 | 0.2818 | 0.4190 | 0.3404 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
103
+ | 0.2339 | 35.5405 | 4300 | 0.2858 | 0.4146 | 0.3412 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
104
+ | 0.2314 | 36.3659 | 4400 | 0.2954 | 0.4224 | 0.3315 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
105
+ | 0.2324 | 37.1913 | 4500 | 0.2810 | 0.4119 | 0.3441 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
106
+ | 0.236 | 38.0166 | 4600 | 0.2791 | 0.4105 | 0.3462 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
107
+ | 0.2277 | 38.8482 | 4700 | 0.2799 | 0.4110 | 0.3482 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
108
+ | 0.2207 | 39.6736 | 4800 | 0.2790 | 0.4103 | 0.3474 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
109
+
110
+
111
+ ### Framework versions
112
+
113
+ - Transformers 4.49.0
114
+ - Pytorch 2.6.0+cu124
115
+ - Datasets 3.2.0
116
+ - Tokenizers 0.21.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adapter.ardz.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a5d07b88ea4d4cd89c621299314e527a8069e8845c0626d0f49311f93b1ce51
3
+ size 8936896