End of training
Browse files- README.md +112 -195
- adapter.ardz.safetensors +3 -0
README.md
CHANGED
@@ -1,199 +1,116 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: cc-by-nc-4.0
|
4 |
+
base_model: facebook/mms-1b-all
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- wer
|
9 |
+
- bleu
|
10 |
+
- rouge
|
11 |
+
model-index:
|
12 |
+
- name: ardzdirect2
|
13 |
+
results: []
|
14 |
---
|
15 |
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# ardzdirect2
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.2790
|
24 |
+
- Wer: 0.4103
|
25 |
+
- Bleu: 0.3474
|
26 |
+
- Rouge: {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0}
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 0.001
|
46 |
+
- train_batch_size: 8
|
47 |
+
- eval_batch_size: 8
|
48 |
+
- seed: 42
|
49 |
+
- gradient_accumulation_steps: 4
|
50 |
+
- total_train_batch_size: 32
|
51 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- lr_scheduler_warmup_steps: 100
|
54 |
+
- num_epochs: 40
|
55 |
+
- mixed_precision_training: Native AMP
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Bleu | Rouge |
|
60 |
+
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:|:---------------------------------------------------------------------------------------------------------------------:|
|
61 |
+
| 3.1012 | 0.8316 | 100 | 0.4876 | 0.6806 | 0.0921 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
62 |
+
| 0.5491 | 1.6570 | 200 | 0.4093 | 0.6217 | 0.1411 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
63 |
+
| 0.5057 | 2.4823 | 300 | 0.3771 | 0.6112 | 0.1300 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
64 |
+
| 0.4825 | 3.3077 | 400 | 0.3685 | 0.6012 | 0.1617 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
65 |
+
| 0.4542 | 4.1331 | 500 | 0.3629 | 0.5924 | 0.1538 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
66 |
+
| 0.4481 | 4.9647 | 600 | 0.3563 | 0.5766 | 0.1571 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
67 |
+
| 0.4405 | 5.7900 | 700 | 0.3521 | 0.5841 | 0.1523 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
68 |
+
| 0.417 | 6.6154 | 800 | 0.3460 | 0.5775 | 0.1802 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
69 |
+
| 0.4034 | 7.4407 | 900 | 0.3478 | 0.5748 | 0.1852 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
70 |
+
| 0.4108 | 8.2661 | 1000 | 0.3490 | 0.5529 | 0.1896 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
71 |
+
| 0.3858 | 9.0915 | 1100 | 0.3277 | 0.5514 | 0.1920 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
72 |
+
| 0.3831 | 9.9231 | 1200 | 0.3192 | 0.5474 | 0.2086 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
73 |
+
| 0.3793 | 10.7484 | 1300 | 0.3265 | 0.5316 | 0.2156 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
74 |
+
| 0.3691 | 11.5738 | 1400 | 0.3161 | 0.5341 | 0.2193 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
75 |
+
| 0.3629 | 12.3992 | 1500 | 0.3108 | 0.5181 | 0.2280 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
76 |
+
| 0.3619 | 13.2245 | 1600 | 0.3102 | 0.5214 | 0.2184 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
77 |
+
| 0.356 | 14.0499 | 1700 | 0.3249 | 0.5145 | 0.2345 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
78 |
+
| 0.3392 | 14.8815 | 1800 | 0.3409 | 0.5234 | 0.2352 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
79 |
+
| 0.3254 | 15.7069 | 1900 | 0.3034 | 0.5288 | 0.2279 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
80 |
+
| 0.3446 | 16.5322 | 2000 | 0.3273 | 0.5074 | 0.2459 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
81 |
+
| 0.3197 | 17.3576 | 2100 | 0.3097 | 0.5306 | 0.2287 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
82 |
+
| 0.3167 | 18.1830 | 2200 | 0.3042 | 0.5164 | 0.2428 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
83 |
+
| 0.3296 | 19.0083 | 2300 | 0.3053 | 0.5265 | 0.2271 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
84 |
+
| 0.3158 | 19.8399 | 2400 | 0.3004 | 0.4763 | 0.2703 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
85 |
+
| 0.3035 | 20.6653 | 2500 | 0.2917 | 0.4649 | 0.2836 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
86 |
+
| 0.3026 | 21.4906 | 2600 | 0.2993 | 0.5098 | 0.2498 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
87 |
+
| 0.3023 | 22.3160 | 2700 | 0.3164 | 0.4760 | 0.2700 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
88 |
+
| 0.2879 | 23.1414 | 2800 | 0.2825 | 0.4441 | 0.3079 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
89 |
+
| 0.2834 | 23.9730 | 2900 | 0.2828 | 0.4685 | 0.2866 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
90 |
+
| 0.2793 | 24.7983 | 3000 | 0.2938 | 0.4437 | 0.3082 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
91 |
+
| 0.2706 | 25.6237 | 3100 | 0.2827 | 0.4508 | 0.3054 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
92 |
+
| 0.2631 | 26.4491 | 3200 | 0.2871 | 0.4309 | 0.3264 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
|
93 |
+
| 0.2742 | 27.2744 | 3300 | 0.2814 | 0.4360 | 0.3181 | {'rouge1': 0.0010395010395010396, 'rouge2': 0.0, 'rougeL': 0.0010395010395010396, 'rougeLsum': 0.0010395010395010396} |
|
94 |
+
| 0.2537 | 28.0998 | 3400 | 0.2923 | 0.4320 | 0.3197 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
95 |
+
| 0.2576 | 28.9314 | 3500 | 0.2784 | 0.4296 | 0.3238 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
96 |
+
| 0.2588 | 29.7568 | 3600 | 0.2830 | 0.4280 | 0.3304 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
97 |
+
| 0.243 | 30.5821 | 3700 | 0.2860 | 0.4254 | 0.3331 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
98 |
+
| 0.2504 | 31.4075 | 3800 | 0.2829 | 0.4171 | 0.3403 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
99 |
+
| 0.2491 | 32.2328 | 3900 | 0.2850 | 0.4194 | 0.3374 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
100 |
+
| 0.2432 | 33.0582 | 4000 | 0.2901 | 0.4158 | 0.3359 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
101 |
+
| 0.2383 | 33.8898 | 4100 | 0.2801 | 0.4171 | 0.3366 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
102 |
+
| 0.2314 | 34.7152 | 4200 | 0.2818 | 0.4190 | 0.3404 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
103 |
+
| 0.2339 | 35.5405 | 4300 | 0.2858 | 0.4146 | 0.3412 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
104 |
+
| 0.2314 | 36.3659 | 4400 | 0.2954 | 0.4224 | 0.3315 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
105 |
+
| 0.2324 | 37.1913 | 4500 | 0.2810 | 0.4119 | 0.3441 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
106 |
+
| 0.236 | 38.0166 | 4600 | 0.2791 | 0.4105 | 0.3462 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
107 |
+
| 0.2277 | 38.8482 | 4700 | 0.2799 | 0.4110 | 0.3482 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
108 |
+
| 0.2207 | 39.6736 | 4800 | 0.2790 | 0.4103 | 0.3474 | {'rouge1': 0.0, 'rouge2': 0.0, 'rougeL': 0.0, 'rougeLsum': 0.0} |
|
109 |
+
|
110 |
+
|
111 |
+
### Framework versions
|
112 |
+
|
113 |
+
- Transformers 4.49.0
|
114 |
+
- Pytorch 2.6.0+cu124
|
115 |
+
- Datasets 3.2.0
|
116 |
+
- Tokenizers 0.21.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
adapter.ardz.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a5d07b88ea4d4cd89c621299314e527a8069e8845c0626d0f49311f93b1ce51
|
3 |
+
size 8936896
|