import torch, torch.nn as nn from vector_quantize_pytorch import ResidualVQ class RVQWrapper(nn.Module): def __init__(self, dim, num_quantizers, codebook_size): super().__init__() self.ln_in = nn.LayerNorm(dim) self.proj_in = nn.Linear(dim, dim) self.rvq = ResidualVQ(dim=dim, num_quantizers=num_quantizers, codebook_size=codebook_size) self.ln_out = nn.LayerNorm(dim) self.proj_out = nn.Linear(dim, dim) def forward(self, x): x = self.proj_in(self.ln_in(x)) q, indices, commit_loss = self.rvq(x) y = self.proj_out(self.ln_out(q)) return y, indices, commit_loss