ihsan31415 commited on
Commit
f446e19
·
verified ·
1 Parent(s): 419adf9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -6
README.md CHANGED
@@ -154,23 +154,44 @@ TrainingArguments(
154
  ### ✅ Evaluation Results
155
 
156
  ```
157
- eval_accuracy = 0.9749
158
- eval_precision = 0.9749
159
- eval_recall = 0.9749
160
- eval_f1 = 0.9749
 
 
 
 
 
 
 
161
  ```
162
 
163
  ---
164
 
165
  ## 🔎 Usage
166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167
  ```python
168
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
169
  import torch
170
 
171
  # Load model and tokenizer
172
- model = AutoModelForSequenceClassification.from_pretrained("ihsan31415/finetuned-indo-roBERTa-financial-sentiment")
173
- tokenizer = AutoTokenizer.from_pretrained("ihsan31415/finetuned-indo-roBERTa-financial-sentiment")
174
 
175
  # Example input
176
  text = "IHSG diprediksi melemah karena sentimen global negatif"
 
154
  ### ✅ Evaluation Results
155
 
156
  ```
157
+
158
+ eval_loss = 0.10230540484189987
159
+ eval_accuracy = 0.9749255130394028
160
+ eval_precision = 0.9749490510899772
161
+ eval_recall = 0.9749255130394028
162
+ eval_f1 = 0.9749326327197978
163
+ eval_runtime = 71.9098
164
+ eval_samples_per_second = 415.395
165
+ eval_steps_per_second = 1.627
166
+ epoch = 5.0
167
+
168
  ```
169
 
170
  ---
171
 
172
  ## 🔎 Usage
173
 
174
+ ```python
175
+ from transformers import pipeline
176
+
177
+ pretrained_name = "ihsan31415/indo-roBERTa-financial-sentiment"
178
+
179
+ nlp = pipeline(
180
+ "sentiment-analysis",
181
+ model=pretrained_name,
182
+ tokenizer=pretrained_name
183
+ )
184
+
185
+ nlp("IHSG diprediksi melemah karena sentimen global negatif")
186
+ ```
187
+
188
  ```python
189
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
190
  import torch
191
 
192
  # Load model and tokenizer
193
+ model = AutoModelForSequenceClassification.from_pretrained("ihsan31415/indo-roBERTa-financial-sentiment")
194
+ tokenizer = AutoTokenizer.from_pretrained("ihsan31415/indo-roBERTa-financial-sentiment")
195
 
196
  # Example input
197
  text = "IHSG diprediksi melemah karena sentimen global negatif"